簡易檢索 / 詳目顯示

研究生: 陳彥蓉
Chen, Yan-Rong
論文名稱: 應用學習曲線於儲能技術進步之成本分析
Learning curve for tracking technical improvement on energy storage cost
指導教授: 吳榮華
Wu, Jung-Hua
共同指導教授: 黃韻勳
Huang, Yun-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 99
中文關鍵詞: 儲能技術鋰離子電池釩液流電池學習曲線敏感度分析
外文關鍵詞: Energy Storage Technologies, Lithium-ion Battery, Vanadium Redox Flow Battery, Learning Curve, Sensitivity Analysis
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來再生能源的興起,雖有效地緩解對於化石燃料的依賴,但其間歇性及不可調度性仍為一大問題。儲能系統的導入除了有助於再生能源的整合,確保能源供應的穩定性,亦可提高電網的效率及可靠性以拓展應用性。然而,隨著再生能源需求的提升,雖帶動儲能產業的發展,但目前仍屬於新興市場階段,除了深受政策及環境的影響,成本的高低亦為取得成功的重要因素之一。

    本研究除了考慮技術的成熟性,並考量我國現有儲能案場所選用的電池類型,以鋰離子電池及釩液流電池作為研究對象,建立單因子及雙因子的學習曲線模型以評估儲能技術未來的成本趨勢。此外,藉由敏感度分析,設定不同情境,進一步地探討各類參數對未來儲能技術發展競爭力之影響。

    分析結果顯示,單因子模型對鋰離子電池(電動車)、鋰離子電池(大型儲能)及釩液流電池(大型儲能)所估算的學習率分別為19.15%、16.24%及12.82%;若加入創新因子的雙因子模型,鋰離子(大型儲能)之學習率提高至21.70%,突顯出研發資源的投入能夠有效地促進技術成本的下降。相較之下,釩液流電池的學習率微幅成長至13.84%,成本進一步下降的幅度並不明顯。總和上述,儘管鋰離子之初始成本相較於釩液流電池較為高昂,但近年來隨著技術創新及材料的研發,鋰離子成本降幅大,應用範圍廣泛,被視為未來具有發展潛力的儲能技術之一。除此之外,透過不同情境的假設可知,除了材料改良及技術的精進,政府政策為未來推廣儲能系統不可缺少的因子,有助於刺激產業發展及市場潛力。

    In spite of the fact that renewable energy has effectively alleviated the dependence on fossil fuel resources in recent years, its intermittency and lack of dispatchability are recognized as the main shortcomings. Thus, the energy storage system has introduced not only the capability of integrating renewable energy to stabilize the output in energy supply, but also the improved efficiency and reliability for grid network to extend the applications. However, renewable energy is still viewed as an emerging market despite the fact that its increased demand has resulted in the development of energy storage industry. Therefore, besides its dependence on policies and environment, the cost is also a factor we must take into account.

    In this study, we considered the maturity of technology and adopted the lithium-ion battery and Vandium Redox Flow Battery (VRB) as the research subjects by taking the existing pilot plant of energy storage systems in Taiwan into consideration. We constructed models of one-factor and two-factor learning curves to estimate the cost trend of energy storage technologies in the future. In addition, we arranged scenario settings to further discuss the relationship between those parameters and the competitiveness of developing energy storage technologies.

    The results showed the learning rates of lithium-ion battery (EV), lithium-ion (Utility) and VRB (Utility) were 19.15%, 16.24% and 12.82%, respectively in the one-factor model. After introducing the two-factor model with innovative indicator, the learning rate of lithium-ion battery (Utility) increased to 21.70%, which revealed that the investment of R&D resources can effectively reduce the cost. In comparison, the learning rate of VRB only increased to 13.84%, and the cost reduction was not obvious. To sum up, although the initial cost of lithium-ion battery is higher than VRB, the cost for lithium-ion battery has dropped recently with the technical innovation and R&D. Widely used in various fields, lithium-ion battery is recognized as one of the promising energy storage technologies in the future. Also, according to scenario settings, if we want to promote the energy storage system for the development of relevant industry as well as its market potential, not only the improvement of material and engineering, but also government policies are needed.

    中文摘要 I ABSTRACT II 誌謝 IV TABLE OF CONTENTS VI TABLE OF FIGURES VIII TABLES X Chapter 1 INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Purpose 3 1.3 Conceptual Framework 6 1.4 Limitation of the Study 8 Chapter 2 BACKGROUND 9 2.1 Electricity Energy Storage Technologies 9 2.2 Lithium-ion Battery and Vanadium Redox Flow Battery 13 2.3 Literature review for Learning Curve 20 Chapter 3 METHODOLOGY 30 3.1 Learning Curve 30 3.2 Sensitivity Analysis 37 Chapter 4 MODEL FORMULATION 38 4.1 Crucial time–series data of electricity energy storage technologies 38 4.2 One-Factor Learning Curve (1FLC) 41 4.3 Two-Factor Learning Curve (2FLC) 47 Chapter 5 RESULTS 50 5.1 One-Factor Learning Curve (1FLC) 50 5.2 Two-Factor Learning Curve (2FLC) 62 5.3 Discussion 68 Chapter 6 CONCLUSIONS AND SUGGESTIONS 71 6.1 Conclusions 71 6.2 Suggestions 74 Reference 75 APPENDIX A. SUMMARY OF 1-FACTOR LEARNING CURVE 85 APPENDIX B. SUMMARY OF 2-FACTOR LEARNING CURVE 94

    1. Acs, Z., Anselin, L. & Varga, A. (2002). Patents and Innovation Counts as Measures of Regional Production of New Knowledge. Research Policy, 31, 1069-1085.
    2. Ainley, J. R. (1995). Enviromental regulations–Their impact on the battery and lead industries. Journal of Power Sources, 53(2), 309-314.
    3. Alotto, P., Guarnieri, M. & Moro, F. (2014). Redox flow batteries for the storage of renewable energy: A review. Renewable & Sustainable Energy Reviews, 29, 325-335.
    4. Argote, L. (Ed.) (1999). Organizatinoal Learning: Creating, Retaining and Transferring Knowledge.
    5. Argote, L. & Epple, D. (1990). Learning-curves in manufacturing. Science, 247(4945), 920-924.
    6. Argote, L. & Miron-Spektor, E. (2011). Organizational Learning: From Experience to Knowledge. Organization Science, 22(5), 1123-1137.
    7. Arrow, K. J. (1962). The economic-implications of learning by doing. Review of Economic Studies, 29(80), 155-173.
    8. Balat, M. (2006). Electricity from worldwide energy sources. Energy Sources Part B-Economics Planning and Policy, 1(4), 395-412.
    9. Barreto, L. & Kypreos, S. (2004). Endogenizing R&D and market experience in the "bottom-up" energy-systems ERIS model. Technovation, 24(8), 615-629.
    10. Beaudin, M., Zareipour, H., Schellenberglabe, A. & Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14(4), 302-314.
    11. BloombergNEF. (2018). 2018 Long-Term Energy Storage Outlook.
    12. BloombergNEF. (2019). A Behind the Scenes Take on Lithium-ion Battery Prices.
    13. BloombergNEF. (2019). 2019 Long-Term Energy Storage Outlook.
    14. BloombergNEF. (2019). 2H 2019 Energy Storage Market Outlook.
    15. Chen, H. S., Cong, T. N., Yang, W., Tan, C. Q., Li, Y. L. & Ding, Y. L. (2009). Progress in electrical energy storage system: A critical review. Progress in Natural Science-Materials International, 19(3), 291-312.
    16. Chen, K. F. & Xue, D. F. (2016). Materials chemistry toward electrochemical energy storage. Journal of Materials Chemistry A, 4(20), 7522-7537.
    17. Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B. & Fraser, R. (2019). Study of energy storage systems and environmental challenges of batteries. Renewable & Sustainable Energy Reviews, 104, 192-208.
    18. Divya, K. C. & Ostergaard, J. (2009). Battery energy storage technology for power systems-An overview. Electric Power Systems Research, 79(4), 511-520.
    19. Dutton, J. M. & Thomas, A. (1984). Treating progress functions as a managerial opportunity. Academy of Management Review, 9(2), 235-247.
    20. Freeman, E., Occello, D. & Barnes, F. (2016). Energy storage for electrical systems in the USA. Aims Energy, 4(6), 856-875.
    21. Gur, T. M. (2018). Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11(10), 2696-2767.
    22. Hadjipaschalis, I., Poullikkas, A. & Efthimiou, V. (2009). Overview of current and future energy storage technologies for electric power applications. Renewable & Sustainable Energy Reviews, 13(6-7), 1513-1522. doi:10.1016/j.rser.2008.09.028
    23. Hastie, T., Tibshirani, R. & Friedman, J. H. (2009). The elements of statistical learning: Data mining, Inference, and Prediction.
    24. Hong, S., Chung, Y. & Woo, C. (2015). Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea. Energy, 79, 80-89.
    25. Huang, J. H., Hunag, J. H. & Li, C. P. (2018). Study on lithium titanate energy storge materials from the pilot plant prodcution in CPC. Journal of Petroleum, 54(4), 95-109.
    26. Ibenholt, K. (2002). Explaining learning curves for wind power. Energy Policy, 30(13), 1181-1189.
    27. IEA. (2018). Energy Storage : Tracking Clean Energy Progress, International Energy Agency. Retrieved from www.iea.org/tcep/energyintegration/energystorage.
    28. IEC, I. E. (2011). Electricla Energy Storage. Geneva.
    29. International Energy Agency, I. (2019). Global EV Outlook 2019 : Scaling-up the transition to electric mobility. Retrieved from
    30. IRENA. (2017). Electricity storage and renewables : Costs and markets to 2030. Retrieved from
    31. IRENA. (2019). Utillity-scale Batteries, International Renewable Energy Agency.
    32. ISEA. (2012). Technology Overview on Electricity Storage. Overview on the potential and on the deployment perspectives of electricity storage technologies. On behalf of Smart Energy for Europe Platform GmbH (SEFEP), Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University Chair for Electrochemical Energy Storage Systems. [Online]. Available at http://www.sefep.eu/activities/projectsstudies/120628_Technology_Overview_Electricity_Storage_SEFEP_ISEA.pdf.
    33. Junginger, M., de Visser, E., Hjort-Gregersen, K., Koornneef, J., Raven, R., Faaij, A. & Turkenburg, W. (2006). Technological learning in bioenergy systems. Energy Policy, 34(18), 4024-4041.
    34. Kittner, N., Lill, F. & Kammen, D. M. (2017). Energy storage deployment and innovation for the clean energy transition. Nature Energy, 2(9).
    35. Kouvaritakis, N., Soria, A. & Isoard, S. (2000). Modelling energy technology dynamics: Methodology for adaptive expectations models with learning by doing and learning by searching. International Journal of Global Energy Issues, 14.
    36. Li, B., Nie, Z. M., Vijayakumar, M., Li, G. S., Liu, J., Sprenkle, V. & Wang, W. (2015). Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Communications, 6.
    37. Li, W. F., Yang, Y. M., Zhang, G. & Zhang, Y. W. (2015). Ultrafast and Directional Diffusion of Lithium in Phosphorene for High-Performance Lithium-Ion Battery. Nano Letters, 15(3), 1691-1697.
    38. Lin, Y. S., Yen, T. H., Huang, J. H., Chang, Y. C., Li, C. P. & Huang, T. L. (2019). Smart Green Gas Station of CPC-Demonstration of Qianfeng RD. Gas Station, Tainan. Journal of Petroleum, 55(1), 81-90.
    39. Lindman, A. & Soderholm, P. (2012). Wind power learning rates: A conceptual review and meta-analysis. Energy Economics, 34(3), 754-761.
    40. Liu, Y. C., Zeng, Y. Z., Lu, Y. F., Shen, C. C. & Chung, J. C. (2015). The Current Development and R&D of Energy Storage Technologies. Journal of Taiwan Energy, 2(2), 169-190.
    41. Manthiram, A. (2016). Electrical energy storage: Materials challenges and prospects. Mrs Bulletin, 41(8), 624-630.
    42. Matteson, S. & Williams, E. (2015a). Learning dependent subsidies for lithium-ion electric vehicle batteries. Technological Forecasting and Social Change, 92, 322-331.
    43. Matteson, S. & Williams, E. (2015b). Residual learning rates in lead-acid batteries: Effects on emerging technologies. Energy Policy, 85, 71-79.
    44. Mauleon, I. (2016). Photovoltaic learning rate estimation: Issues and implications. Renewable & Sustainable Energy Reviews, 65, 507-524.
    45. McDonald, A. & Schrattenholzer, L. (2001). Learning rates for energy technologies. Energy Policy, 29(4), 255-261.
    46. Mckinsey & Company. (2012). Battery technology charges ahead. Retrieved from http://www.mckinsey.com/insights/energy_resources_materials/battery_technology_charges_ahead
    47. Mckinsey & Company. (2018). The new rules of competition in energy storage.
    48. McManus, M. C. (2012). Environmental consequences of the use of batteries in low carbon systems: The impact of battery production. Applied Energy, 93, 288-295.
    49. Menictas, C. & Skyllas-Kazacos, M. (2011). Performance of vanadium-oxygen redox fuel cell. Journal of Applied Electrochemistry, 41(10), 1223-1232.
    50. Mohamed, M. R., Leung, P. K. & Sulaiman, M. H. (2015). Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system. Applied Energy, 137.
    51. Nemet, G. F. (2009). Interim monitoring of cost dynamics for publicly supported energy technologies. Energy Policy, 37(3), 825-835.
    52. Nikolaidis, P. & Poullikkas, A. (2017). A comparative review of electrical energy storage systems for better sustainability. Journal of Power Technologies, 97(3), 220-245.
    53. Nikolaidis, P. & Poullikkas, A. (2018). Cost metrics of electrical energy storage technologies in potential power system operations. Sustainable Energy Technologies and Assessments, 25, 43-59.
    54. Nordhaus, W. D. (2013). The Perils of the Learning Model for Modeling Endogenous Technological Change. Energy Journal, 35(1), 1-13. doi:10.5547/01956574.35.1.1
    55. NRECA. (2019). Battery Energy Storage Overview.
    56. Nykvist, B. & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5(4), 329-332.
    57. Partridge, I. (2013). Renewable electricity generation in India-A learning rate analysis. Energy Policy, 60, 906-915.
    58. Poullikkas, A. (2013). A comparative overview of large-scale battery systems for electricity storage. Renewable & Sustainable Energy Reviews, 27, 778-788.
    59. Qiu, Y. & Anadon, L. (2012). The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization. Energy Economics - ENERG ECON, 34.
    60. REN21. (2019). Renewables 2019 Gobal Status Report. Retrieved from
    61. Rubin, E. S., Azevedo, I. M. L., Jaramillo, P. & Yeh, S. (2015). A review of learning rates for electricity supply technologies. Energy Policy, 86, 198-218.
    62. Ruffini, E. & Wei, M. (2018). Future costs of fuel cell electric vehicles in California using a learning rate approach. Energy, 150, 329-341.
    63. Söderholm, P. & Sundqvist, T. (2003). Learning curve analysis for energy technologies: Theoretical and econometric issues.
    64. Sandia Corporation (2018). DOE Global Energy Storage Database, Energy Storage Exchange. Retrived from www.energystorageexchange.org.
    65. Sarbu, I. & Sebarchievici, C. (2018). A Comprehensive Review of Thermal Energy Storage. Sustainability (Switzerland), 10.
    66. Schmidt, O., Hawkes, A., Gambhir, A. & Staffell, I. (2017). The future cost of electrical energy storage based on experience rates. Nature Energy, 2(8).
    67. Scrosati, B. & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419-2430.
    68. Shi, X., Chen, H., Yu, Y. & Wen, F. (2018). Development of variable renewable energy policy in developing countries: A case study of Sri Lanka. International Journal of Public Policy, 14.
    69. Skyllas-Kazacos, M., Chakrabarti, M. H., Hajimolana, S. A., Mjalli, F. S. & Saleem, M. (2011). Progress in Flow Battery Research and Development. Journal of The Electrochemical Society, 158(8), R55.
    70. Taylor, P. G., Bolton, R., Stone, D. & Upham, P. (2013). Developing pathways for energy storage in the UK using a coevolutionary framework. Energy Policy, 63, 230-243.
    71. Teece, D. J. (2008). Technological Know-How, Organizational Capabilities, and Strategic Management: World Scientific Publishing.
    72. TIPO, Global Patent Search System, Taiwan Intellctual Property Office. Retrived from https://www.tipo.gov.tw/en/mp-2.html.
    73. Vanysek, P. & Novak, V. (2018). Availability of Suitable Raw Materials Determining the Prospect for Energy Storage Systems Based on Redox Flow Batteries. Acta Montanistica Slovaca, 23(1), 90-99.
    74. Vazquez, S., Lukic, S. M., Galvan, E., Franquelo, L. G. & Carrasco, J. M. (2010). Energy Storage Systems for Transport and Grid Applications. Ieee Transactions on Industrial Electronics, 57(12), 3881-3895.
    75. Walsh, F. C., de Leon, C. P., Berlouis, L., Nikiforidis, G., Arenas-Martinez, L. F., Hodgson, D. & Hall, D. (2015). The Development of Zn-Ce Hybrid Redox Flow Batteries for Energy Storage and Their Continuing Challenges. Chempluschem, 80(2), 288-311.
    76. Wang, Q. W., Hang, Y., Hu, J. L. & Chiu, C. R. (2018). An alternative metafrontier framework for measuring the heterogeneity of technology. Naval Research Logistics, 65(5), 427-445.
    77. Wei, M., Smith, S. J. & Sohn, M. D. (2017). Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US. Applied Energy, 191, 346-357.
    78. Woodridge, J. M. (2016). Introductory Econometrics: A Modern Approach.
    79. World Energy Council. (2016). E-Storage: Shifting from cost to value Wind and Solar applications. London EC3V 3NH: World Energy Council.
    80. World Energy Council. (2019). Energy Storage Monitor : Latest trends in energy storage.
    81. WRIGHT, T. P. (1936). Factors Affecting the Cost of Airplanes. Journal of the Aeronautical Sciences, 3(4), 122-128.
    82. Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., Lu, X., Choi, D., Lemmon, J. P. & Liu, J. (2011). Electrochemical Energy Storage for Green Grid. Chemical Reviews, 111(5), 3577-3613.
    83. Yeh, S. & Rubin, E. S. (2012). A review of uncertainties in technology experience curves. Energy Economics, 34(3), 762-771.
    84. Yelle, L. E. (1976). Estimating learning curves for potential products. Industrial Marketing Management, 5(2-3), 147-154.
    85. Yilmaz B. S. (2019). Uncertainty Issues in Biomass-Based Production Chains. In (pp. 113-142).
    86. Yu, C. F., van Sark, W. & Alsema, E. A. (2011). Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects. Renewable & Sustainable Energy Reviews, 15(1), 324-337.
    87. Zeng, Y. K., Zhou, X. L., An, L., Wei, L. & Zhao, T. S. (2016). A high-performance flow-field structured iron-chromium redox flow battery. Journal of Power Sources, 324, 738-744.
    88. Zhang, C., Wei, Y. L., Cao, P. F. & Lin, M. C. (2018). Energy storage system: Current studies on batteries and power condition system. Renewable & Sustainable Energy Reviews, 82, 3091-3106.
    89. Zhang, D., Chai, Q., Zhang, X., He, J., Yue, L., Dong, X. & Wu, S. (2012). Economical assessment of large-scale photovoltaic power development in China. Energy, 40, 370–375.
    90. Zhang, M. M., Wang, Q. W., Zhou, D. Q. & Ding, H. (2019). Evaluating uncertain investment decisions in low-carbon transition toward renewable energy. Applied Energy, 240, 1049-1060.
    91. Zheng, C. & Kammen, D. M. (2014). An innovation-focused roadmap for a sustainable global photovoltaic industry. Energy Policy, 67, 159-169.
    92. Zhou, D. Q., Ding, H., Zhou, P. & Wang, Q. W. (2019). Learning curve with input price for tracking technical change in the energy transition process. Journal of Cleaner Production, 235, 997-1005.
    93. 黃泰得(2003),航電產品學習曲線之個案估計-伸縮最小平方法之應用,碩士論文,東海大學。

    無法下載圖示 校內:2025-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE