簡易檢索 / 詳目顯示

研究生: 王耕禹
Wang , Keng-Yu
論文名稱: 跨音速條件下柔性後掠板流固耦合行為研究
Fluid-Structure Interaction Behavior Study of Flexible Back-Sweep Plate Under Transonic Con-dition
指導教授: 黃捷楷
Currao, Gaetano M.D.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 62
中文關鍵詞: 氣動彈性翼身融合體震波與邊界曾相互作用 (SWBLI)流體結構耦合 (流固耦合)穿音速計算流體力學
外文關鍵詞: Aeroelastic, Blended Wing Body (BWB), Shock Wave-Boundary Interaction (SWBLI), Fluid-Structure Interaction (FSI), Transonic, Computational Fluid Dynamic (CFD)
相關次數: 點閱:41下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究深入探討柔性後掠鈦板在穿音速條件下之氣動彈性現象,旨在未來翼身融合體配置之流固耦合顫振研究奠定初步基礎。此研究結合了數值模擬及實驗驗證,其中流場分析部分採用k-ω SST湍流模型求解時均之三維 Navier-Stokes 方程,結構分析部分則使用有限元素法 (FEM)進行分析。而實驗部分則在穿音速風洞中進行,其實驗過程中使用高速攝影機及雷射掃描器進行實驗模型在馬赫數0.8及-1度攻角下的動態響應。在數值模擬的結果中,靜態計算流體力學模擬揭示了翼展流動、流動分離、震波形成與前緣渦等現象。在穿音速條件下,氣流將在局部加速至音速以上並導致震波的形成。而這種震波與邊界層的相互作用 (SWBLI)會顯著增強逆壓力梯度,使其空氣動力性能及結構受影響,這類複雜的流動現象將對整體結構構成極大的挑戰。流固耦合模擬則全面的捕捉了空氣動力載荷與結構變形的耦合結果。實驗之位移數據顯示在翼尖處有明顯的振盪行為,與流固耦合模擬存在差異,這可能歸因於在風洞設備中的 PID控制器在實驗過程中的修正誤差。在頻率分析上顯示,本研究成功區分了在實驗模型中各部件對於頻譜之貢獻,並最終確定其柔性後掠鈦板的第一模態為 81 Hz,第二模態為 370 Hz,與 FEM 預測一致 。本研究透過整合數值模擬和實驗驗證,深入分析並確定了實驗模型在穿音速 FSI 條件下的物理特性 。

    This study investigates the aeroelastic phenomenon of the flexible sweep titanium plate under transonic conditions, aiming to lay a preliminary foundation for future Fluid-Structure Interaction flutter investigations concerning Blended Wing Body (BWB) configuration. The investigation combined numerical simulations with experiment validation. For fluid flow analysis, the time-averaged three-dimensional Navier-Stokes equations were solved using the SST turbulence model, while structural analysis was performed using the Finite Element Method (FEM).The experimental portion was conducted in a transonic wind tunnel, where a high-speed camera and a laser scanner were utilized to record the dynamic response of the experimental model at Mach 0.8 and -1-degree angle of attack. In the numerical simulation results, static Computational Fluid Dynamic (CFD) simulations revealed phenomena such as spanwise flow, shock wave formation, and leading-edge vortices. Under transonic condi-tions, the airflow could locally accelerate to supersonic speeds, leading to the formation of shock waves. The interaction between these shock waves and the boundary layer (SWBLI) was found to significantly enhance the adverse pressure gradient, thereby affecting the aero-dynamic performance and structural integrity. The experimental results confirmed the model's dynamic behavior. Experimental displacement data showed noticeable oscillatory behavior at the plate tip, with discrepancies compared to the FSI simulations. These differences were at-tributed to factors such as correction errors from the PID controller in the wind tunnel facility during the experiment. In terms of frequency analysis, this study successfully distinguished the contribution of each component within the experimental model. Consequently, the first mode of the flexible swept titanium plate was definitively determined to be 81 Hz, and the second mode 370 Hz, which was consistent with FEM predictions. Through the integration of numerical simulations and experimental validation, the physical characteristics of the ex-perimental model under transonic FSI conditions were thoroughly analyzed and confirmed.

    Abstract I 摘要 II Acknowledgement III Table of Contents IV List of Tables VI List of Figures VII Nomenclatures IX 1. Introduction 1 1.1. Research Objective 1 1.2. Organization of the Thesis 1 2. Literature Review 2 2.1. Transonic Flow Physics and Shock Wave-Boundary Layer Interaction (SWBLI) 2 2.2. Fluid-Structure Interaction (FSI) 2 2.3. Blended Wing Body (BWB) Configuration 3 2.4. Buffet 4 2.5. Aeroelasticity 4 3. Numerical Technique 5 3.1. Governing Equations 5 3.2. Near-Wall Mesh Refinement Study 7 3.3. Mesh Independent Study 9 3.4. Numerical Fluid Domain 12 4. Experimental Setup 14 4.1. ASTRC Transonic Wing Tunnel 14 4.2. Wind Tunnel Model Setup 14 4.3. Laser Scanner 17 4.4. High-Speed Camera 18 4.5. Material Properties Evaluation 18 4.6. Experimental Model Characterization 20 5. Result 21 5.1. Static-steady CFD Simulation 21 5.2. Detached Eddy Simulation (DES) 23 5.3. Fluid-Structure Interaction (FSI) Simulation 32 5.4. Experimental Result 38 5.4.1. Analysis of Displacement and Twist Angle 38 5.4.2. Frequency Analysis 42 6. Conclusion 45 References 47 Appendix 49

    1. Zhoujie Lyu and Joaquim R. R. A. Martins, Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft. AIAA Journal of aircraft, Vol. 51., No. 5, 2014.
    2. Sun, Z., Miao, X. & Jagadeesh, C., Experimental Investigation of a Shock Wave Boundary Layer Interaction over a Transonic Bump. Physics of Fluids Volume 32, Issue 10, 2020.
    3. David S. Dolling., Fifty Years of Shock-Wave/Boundary-Layer InteractionResearch: What Next? AIAA Journal Volune 39, Issue 8.
    4. Noel T. Clemens1 and Venkateswaran Narayanaswamy., Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions. Annual Review of Fluid Mechanics, 2014. 46(Volume 46, 2014): p470.
    5. Earl H.Dowell. A Modern Course in Aeroelasticity. Vol. 264. 2021: Springer Nature.
    6. Gaetano M.D. Currao, Transonic leading-edge stall flutter : modelling, simulations and experiments., J. Fluid Mech. (2024), vol. 984, A54.
    7. N.Qin, A. Vavalle, A. Le Moigne, M. Laban, K. Hackett, P.Weinerfelt., Aerodynamic considerations of blended wing body aircraft. Progress in Aerospace Sciences Volume 40, Issue 6, August 2004, Pages 321-343.
    8. J.E Green., Greener by design-the technology challenge. Aeronaut Journal, 106 (2002), p57-113.
    9. Paul Okonkwo, Howard Smith., Review of evolving trends in blended wing body aircraft design. Progress in Aerospace Sciences,volume 82, April 2016, p1-23.
    10. J. Dandois, P. Molton, A. Lepage, A. Geeraert, V. Brunet, J.B. Dor, E., Buffet Characterization and control for turbulent wings. AerospaceLab – The ONERA Journal, Issue 6, June 2013.
    11. D. Caruana, A. Mignosi, M. Corrège, A. Le Pourhiet, A.M. Rodde, Buffet and buffeting control in transonic flow. Aerospace Science and Technology 9 (2005) p605–p616.
    12. Y.C. Fung, An Introduction to THE THEORY OF AEROELASTICITY. Courier Dover Publications, 2008.
    13. D.C Wilcox, Turbulence Modeling for CFD. DCW Industries (2004).
    14. Nilolaos D. Katopodes, Viscous Fluid Flow, Free-Surface Flow Environmental Fluid Mechanics. Editor. 2019, Butterworth-Heinemann. p. 324-426.
    15. Oddvar O. Bendiksen, Review of unsteady transonic aerodynamics : Theory and applications. Progress in Aerospace Sciences,volume 47, February 2011, p135-167.
    16. F.R Menter, Two-equation eddy-viscosity tur-bulence models for engineering applications. AIAA Journal, 32(8):1598-1605, 1994.
    17. D.C Wilcox, Simulation of transition with a two-equation turbulence model. AIAA Journal, 32(2):247–255, 1994.
    18. M. Liu and D.G. Gorman, Formulation of rayleigh damping and its extensions. Computers and structures, 57(2):277–285, 1995.
    19. Ryan J. Beaubien, Fred Nitzsche, Daniel Feszty, Time and frequency domain flutter solutions for the AGARD 445.6 wing. Article, January 2005.
    20. Utkun Erinc Malkocoglu, Mohamad el-Hajj Ali Barada, Ferhat Cetin, Bayram Celik, K. Bulent Yuceil, Experimental and Computational Investigations of Shock Wave-Boundary Layer Interaction on a Transonic Airfoil with and without Bump. AIAA AVIATION June 15-19, 2020, VIRTUAL EVENT.
    21. D.Sedlacek, S.Biechele, C.Breitsamter, Numerical investigations of vortex formation on a generic multiple‑swept‑wing configuration. CEAS Aeronautical Journal, volume 13, 2022, p295-p310.
    22. C.Breitsamter, Unsteady flow phenomena associated with leading-edge vortices. Progress in Aerospace Sciences, volume 44, 2008, p48-p65.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE