簡易檢索 / 詳目顯示

研究生: 許秀蓮
Hsu, Hsiu-Lien
論文名稱: 探討奈米金屬表面結構對表面增強拉曼共振增益的影響
Exploring the surface structure effects of metal nanoparticles on surface-enhanced Raman resonance
指導教授: 孫亦文
Sun, I-Wen
黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: 表面增強拉曼散射金奈米顆粒單寧酸保護劑效應離心轉速雙金屬奈米顆粒二次成長法消光係數
外文關鍵詞: SERS, surface effect, secondary growth method, surfactant, extinction coefficient
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何提升表面增強拉曼散射(SERS)效果是一項熱門的課題,但比較可惜的是,很少有文獻探討金屬奈米顆粒界面的影響,故本研究第一個部分針對保護劑影響作探討,使用單寧酸(TNA)同時作為保護劑及還原劑合成金奈米粒子,此材料相對於傳統的以溴化十六烷基三甲銨(CTAB)作為保護劑的金奈米粒子而言,具有較佳的SERS效果。此外,額外加入聚乙烯亞胺(PEI)達到動力學控制合成的金奈米顆粒,則有最優異的增強效果。我們也意外發現將純化奈米粒子的轉速調整,能再進一步增強。第二部分則是針對奈米粒子結構進行探討,使用銀奈米棱柱、方塊、球體進行金的成長,在相同金銀元素比條件中,形狀與消光係數扮演重要角色,直接影響SERS 的增益強度。

    How to improve the surface-enhanced Raman scattering (SERS) is a hot topic, but unfortunately, there is a paucity of literature on the influence of the interface of metal nanoparticles. Therefore, the first part of this study explores the effects of protective agents, using tannic acid (TNA) as a protective agent and reducing agent to synthesize gold nanoparticles, which is compared with conventional cetyltrimethylammonium bromide (CTAB) has a better SERS effect. Furthermore, the addition of polyethyleneimine (PEI) to the kinetically controlled synthesis of gold nanoparticles, further enhance SERS effect. We also unexpectedly found that adjusting the centrifugal speed of the purified nanoparticles can affect the efficiency of signal enhancement. The second part is about the structure of nanoparticles. The silver nanoprisms, nanocubes and nanospheres are used for gold growth. In the same gold-silver element ratio, the shape and extinction coefficient play an important role, directly affecting the gain intensity of SERS.

    中文摘要 I Extended Abstract II 致謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第一部分:純金系統 1 章節一 緒論 1 1.1 表面增強拉曼散射 (SERS) 1 1.1.1 電磁場增強效應(Electromagnetic enhancement, EM) 2 1.1.2 化學增強效應(Chemical enhancement, CM) 3 1.1.3 激發雷射波長選擇 3 1.2 金奈米顆粒 (Au NPs) 4 1.2.1 合成方法 4 1.2.2 單寧酸(Tannic acid, TNA) 4 章節二 研究動機 8 章節三 材料與方法 10 3.1 使用藥品 10 3.2 實驗儀器 11 3.3 實驗方法 13 3.3.1 Au@TNA奈米粒子合成 13 3.3.2 Au@TNA/PEI與agg-Au@TNA/PEI奈米粒子合成 13 3.3.3 修飾PSS的Au@TNA/PEI與LBL修飾的Au@TNA/PEI奈米粒子合成 13 3.3.4 金截立方體奈米粒子(Au cuboctahedral)與金八面體奈米粒子(Au octahedral)合成 14 3.3.5 金棒奈米顆粒(Au rod)合成 14 3.3.6 拉曼散射量測 15 章節四 結果與討論 16 4.1 分散性Au NPs的性質 16 4.1.1 Au@TNA NP形貌與光學性質分析 16 4.1.2 Au@TNA/PEI形貌與光學性質分析 16 4.1.3 分散性Au NPs的SERS性質 17 4.1.4 Layer-by-layer實驗 19 4.2 agg-Au@TNA/PEI的性質 20 4.2.1 SPR峰以及SERS性質量測 20 4.2.2 Cryo-EM分析以及表面改質實驗 21 章節五 結論 34 第二部分: 銀金雙金屬系統 35 章節一 緒論 35 1.1 雙金屬奈米粒子合成法 35 1.1.1 賈凡尼置換反應(galvanic replacement reaction) 35 1.1.2 種子成長法(seed growth method) 35 章節二 研究動機 40 章節三 材料與方法 41 3.1 使用藥品 41 3.2 實驗儀器 43 3.3 實驗方法 44 3.3.1 奈米銀板(Ag plate)合成 44 3.3.2 奈米銀方塊(Ag cube)合成 44 3.3.3 奈米銀球(Ag sphere)合成 44 3.3.4 銀金奈米粒子(AgAu NPs)合成 45 3.3.5 拉曼散射量測 45 3.3.6 消光係數計算 46 章節四 結果與討論 48 4.1 核殼結構銀金奈米粒子合成 48 4.1.1 形貌與吸收光譜分析 48 4.1.2 表面增強拉曼散射光譜測試 49 4.1.3 表面電位與組成元素分析 51 4.2 三維尖刺結構銀金奈米粒子合成 52 4.2.1 形貌與吸收光譜分析 52 4.2.2 表面增強拉曼散射光譜測試 53 4.2.3 表面電位與組成元素分析 54 4.2.4 拉曼訊號強度與消光係數比較 54 章節五 結論 68 參考文獻 69

    1. Wang, F.; Cao, S.; Yan, R.; Wang, Z.; Wang, D.; Yang, H., Sensors 2017, 17 (11), 2689.
    2. Tian, Z. Q.; Ren, B., Annu. Rev. Phys. Chem. 2004, 55, 197-229.
    3. Sers, C.; Emmenegger, U.; Husmann, K.; Bucher, K.; Andres, A. C.; Schafer, R., J. Cell Biol. 1997, 136 (4), 935-944.
    4. Ostroverkhova, O., Handbook of Organic Materials for Electronic and Photonic Devices. Woodhead Publishing: 2018.
    5. Gu, X.; Trujillo, M. J.; Olson, J. E.; Camden, J. P., SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. In Annual Review of Analytical Chemistry, Vol 11, Bohn, P. W.; Pemberton, J. E., Eds. Annual Reviews: Palo Alto, 2018; Vol. 11, pp 147-169.
    6. Mahmoud, M. A.; Garlyyev, B.; El-Sayed, M. A., The journal of physical chemistry letters 2014, 5 (23), 4088-4094.
    7. Zhang, C. H.; Zhu, J.; Li, J. J.; Zhao, J. W., ACS Appl. Mater. Interfaces 2017, 9 (20), 17388-17399.
    8. Zhong, L. B.; Liu, Q.; Wu, P.; Niu, Q. F.; Zhang, H.; Zheng, Y. M., Environ. Sci. Technol. 2018, 52 (10), 5812-5820.
    9. Yang, L.; Hu, J.; He, L.; Tang, J.; Zhou, Y.; Li, J.; Ding, K., Chemical Engineering Journal 2017, 327, 694-704.
    10. Feng, J.; Chen, L.; Xia, Y.; Xing, J.; Li, Z.; Qian, Q.; Wang, Y.; Wu, A.; Zeng, L.; Zhou, Y., ACS Biomaterials Science & Engineering 2017, 3 (4), 608-618.
    11. Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M., Chemical Society Reviews 2017, 46 (13), 4042-4076.
    12. Camden, J. P.; Dieringer, J. A.; Wang, Y.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P., Journal of the American Chemical Society 2008, 130 (38), 12616-12617.
    13. Osberg, K. D.; Rycenga, M.; Harris, N.; Schmucker, A. L.; Langille, M. R.; Schatz, G. C.; Mirkin, C. A., Nano letters 2012, 12 (7), 3828-3832.
    14. Rycenga, M.; Langille, M. R.; Personick, M. L.; Ozel, T.; Mirkin, C. A., Nano letters 2012, 12 (12), 6218-6222.
    15. Kim, W.; Kim, N.; Park, J. W.; Kim, Z. H., Nanoscale 2016, 8 (2), 987-994.
    16. Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N., Nano Research 2016, 9 (8), 2303-2318.
    17. Liu, K.; Bai, Y.; Zhang, L.; Yang, Z.; Fan, Q.; Zheng, H.; Yin, Y.; Gao, C., Nano letters 2016, 16 (6), 3675-3681.
    18. Chu, H.; Song, S.; Li, C.; Gibson, D., Coatings 2017, 7 (2), 26.
    19. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P., The Journal of Physical Chemistry B 2005, 109 (22), 11279-11285.
    20. Ye, J.; Hutchison, J. A.; Uji-i, H.; Hofkens, J.; Lagae, L.; Maes, G.; Borghs, G.; Van Dorpe, P., Nanoscale 2012, 4 (5), 1606-1611.
    21. McNay, G.; Eustace, D.; Smith, W. E.; Faulds, K.; Graham, D., Applied spectroscopy 2011, 65 (8), 825-837.
    22. Álvarez-Puebla, R. n. A., The journal of physical chemistry letters 2012, 3 (7), 857-866.
    23. Haynes, C. L.; Van Duyne, R. P., The Journal of Physical Chemistry B 2003, 107 (30), 7426-7433.
    24. Lee, K.-S.; El-Sayed, M. A., The Journal of Physical Chemistry B 2006, 110 (39), 19220-19225.
    25. Starowicz, Z.; Wojnarowska-Nowak, R.; Ozga, P.; Sheregii, E., Colloid and polymer science 2018, 296 (6), 1029-1037.
    26. Zeman, E. J.; Schatz, G. C., Journal of Physical Chemistry 1987, 91 (3), 634-643.
    27. Han, Y.; Lupitskyy, R.; Chou, T.-M.; Stafford, C. M.; Du, H.; Sukhishvili, S., Analytical chemistry 2011, 83 (15), 5873-5880.
    28. Ivanova, O. S.; Zamborini, F. P., Journal of the American Chemical Society 2009, 132 (1), 70-72.
    29. Qi, H.; Alexson, D.; Glembocki, O.; Prokes, S., Nanotechnology 2010, 21 (21), 215706.
    30. Yin, Y.; Li, Z.-Y.; Zhong, Z.; Gates, B.; Xia, Y.; Venkateswaran, S., Journal of Materials Chemistry 2002, 12 (3), 522-527.
    31. Panzarini, E.; Mariano, S.; Carata, E.; Mura, F.; Rossi, M.; Dini, L., International journal of molecular sciences 2018, 19 (5), 1305.
    32. Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M., Langmuir 2005, 21 (23), 10644-10654.
    33. Tsai, T.-T.; Huang, T.-H.; Chang, C.-J.; Ho, N. Y.-J.; Tseng, Y.-T.; Chen, C.-F., Scientific reports 2017, 7 (1), 3155.
    34. Thankappan, A.; Kalarikkal, N.; Thomas, S.; Padinjakkara, A., Polymeric and Nanostructured Materials: Synthesis, Properties, and Advanced Applications. CRC Press: 2018.
    35. Huang, C.-J.; Chiu, P.-H.; Wang, Y.-H.; Chen, W. R.; Meen, T. H., Journal of The Electrochemical Society 2006, 153 (8), D129-D133.
    36. Hou, H.; Chen, L.; He, H.; Chen, L.; Zhao, Z.; Jin, Y., Journal of Materials Chemistry B 2015, 3 (26), 5189-5196.
    37. Franco, R.; Pedrosa, P.; Carlos, F. F.; Veigas, B.; Baptista, P. V., Handbook of nanoparticles 2016, 1339-1370.
    38. Shah, M.; Badwaik, V.; Kherde, Y.; Waghwani, H. K.; Modi, T.; Aguilar, Z. P.; Rodgers, H.; Hamilton, W.; Marutharaj, T.; Webb, C., Front. Biosci 2014, 19 (1320), 10.2741.
    39. Ziegler, C.; Eychmüller, A., The Journal of Physical Chemistry C 2011, 115 (11), 4502-4506.
    40. Szunerits, S.; Spadavecchia, J.; Boukherroub, R., Reviews in Analytical Chemistry 2014, 33 (3), 153-164.
    41. Collins, T.; Gordon-Wylie, S.; Bartos, M.; Horwitz, C.; Woomer, C.; Williams, S.; Patterson, R.; Vuocolo, L.; Paterno, S.; Strazisar, S., Green chemistry. Simon and Schuster Macmillan: New York: 1997; Vol. 2, pp 691-697.
    42. Horváth, I. T.; Anastas, P. T., Introduction: green chemistry. ACS Publications: 2007.
    43. Huang, X.; Wu, H.; Liao, X.; Shi, B., Green Chemistry 2010, 12 (3), 395-399.
    44. Shankar, S. S.; Ahmad, A.; Pasricha, R.; Sastry, M., Journal of Materials Chemistry 2003, 13 (7), 1822-1826.
    45. Govindaraju, K.; Basha, S. K.; Kumar, V. G.; Singaravelu, G., Journal of Materials Science 2008, 43 (15), 5115-5122.
    46. Ismail, E.; Saqer, A.; Assirey, E.; Naqvi, A.; Okasha, R., International journal of molecular sciences 2018, 19 (9), 2612.
    47. Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P., Applied microbiology and biotechnology 2006, 69 (5), 485-492.
    48. Lee, C.-W.; Ko, H.; Chang, S.-H. G.; Huang, C.-C., Green Chemistry 2018, 20 (23), 5318-5326.
    49. Galanakis, C. M., Nutraceutical and functional food components: Effects of innovative processing techniques. Academic Press: 2016.
    50. Quideau, S.; Deffieux, D.; Douat‐Casassus, C.; Pouysegu, L., Angewandte Chemie International Edition 2011, 50 (3), 586-621.
    51. Cannavino, S. A.; King, C. A.; Ferrara, D. W. In Green Chemistry Techniques for Gold Nanoparticles Synthesis, APS March Meeting Abstracts, 2016.
    52. Mata, R.; Nakkala, J. R.; Sadras, S. R., Colloids and Surfaces B: Biointerfaces 2016, 143, 499-510.
    53. Jin, W.; Xu, W.; Ge, H.; Li, Y.; Li, B., RSC Advances 2015, 5 (34), 26496-26503.
    54. Ahmad, T., Journal of Nanotechnology 2014, 2014.
    55. Suherman, A. L.; Zampardi, G.; Amin, H. M.; Young, N. P.; Compton, R. G., Physical Chemistry Chemical Physics 2019, 21 (8), 4444-4451.
    56. Benz, F.; Chikkaraddy, R.; Salmon, A.; Ohadi, H.; De Nijs, B.; Mertens, J.; Carnegie, C.; Bowman, R. W.; Baumberg, J. J., The journal of physical chemistry letters 2016, 7 (12), 2264-2269.
    57. Chen, H.-C.; Hsu, T.-C.; Liu, Y.-C.; Yang, K.-H., Rsc Advances 2014, 4 (21), 10553-10559.
    58. Zhang, L.; Zhang, Y.; Ahn, J.; Wang, X.; Qin, D., Chemistry of Materials 2019, 31 (3), 1057-1065.
    59. Liu, Y.; Zhou, J.; Yuan, X.; Jiang, T.; Petti, L.; Zhou, L.; Mormile, P., RSC Advances 2015, 5 (84), 68668-68675.
    60. Ali, M. R.; Snyder, B.; El-Sayed, M. A., Langmuir 2012, 28 (25), 9807-9815.
    61. Makkar, H.; Becker, K., Journal of Agricultural and Food Chemistry 1996, 44 (5), 1291-1295.
    62. Trigari, S.; Rindi, A.; Margheri, G.; Sottini, S.; Dellepiane, G.; Giorgetti, E., Journal of Materials Chemistry 2011, 21 (18), 6531-6540.
    63. Saute, B.; Premasiri, R.; Ziegler, L.; Narayanan, R., Analyst 2012, 137 (21), 5082-5087.
    64. Stoerzinger, K. A.; Lin, J. Y.; Odom, T. W., Chemical science 2011, 2 (8), 1435-1439.
    65. Doyen, M.; Goole, J.; Bartik, K.; Bruylants, G., Journal of colloid and interface science 2016, 464, 160-166.
    66. de la Rica, R., Nanoscale 2017, 9 (47), 18855-18860.
    67. Huang, Y.; Lin, D.; Li, M.; Yin, D.; Wang, S.; Wang, J., Sensors 2019, 19 (7), 1554.
    68. Bai, T.; Wang, M.; Cao, M.; Zhang, J.; Zhang, K.; Zhou, P.; Liu, Z.; Liu, Y.; Guo, Z.; Lu, X., Analytical and bioanalytical chemistry 2018, 410 (9), 2291-2303.
    69. Sun, J.; Wang, X.; Liu, J.; Wan, P.; Liao, Q.; Wang, F.; Luo, L.; Sun, X., RSC Advances 2014, 4 (67), 35263-35267.
    70. Monga, A.; Pal, B., RSC Advances 2015, 5 (50), 39954-39963.
    71. Harris, D. C., Quantitative chemical analysis. W.H. Freeman and Co.: New York, 2010.
    72. Sutter, E. A.; Sutter, P. W., Nanoscale 2017, 9 (3), 1271-1278.
    73. Sun, Y.; Xia, Y., Science 2002, 298 (5601), 2176-2179.
    74. Csapó, E.; Oszkó, A.; Varga, E.; Juhász, Á.; Buzás, N.; Kőrösi, L.; Majzik, A.; Dékány, I., Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 415, 281-287.
    75. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y., Advanced Materials 2013, 25 (44), 6313-6333.
    76. Srnová-Šloufová, I.; Lednický, F.; Gemperle, A.; Gemperlová, J., Langmuir 2000, 16 (25), 9928-9935.
    77. Shahjamali, M. M.; Bosman, M.; Cao, S.; Huang, X.; Saadat, S.; Martinsson, E.; Aili, D.; Tay, Y. Y.; Liedberg, B.; Loo, S. C. J., Advanced Functional Materials 2012, 22 (4), 849-854.
    78. Jin, Y.; Dong, S., The Journal of Physical Chemistry B 2003, 107 (47), 12902-12905.
    79. Liu, S.; Chen, N.; Li, L.; Pang, F.; Chen, Z.; Wang, T., Optical Materials 2013, 35 (3), 690-692.
    80. Lu, L.; Burkey, G.; Halaciuga, I.; Goia, D. V., Journal of colloid and interface science 2013, 392, 90-95.
    81. Huang, W.-S.; Sun, I.-W.; Huang, C.-C., Journal of Materials Chemistry A 2018, 6 (27), 13041-13049.
    82. Sanedrin, R. G.; Georganopoulou, D. G.; Park, S.; Mirkin, C. A., Advanced Materials 2005, 17 (8), 1027-1031.
    83. Gao, C.; Lu, Z.; Liu, Y.; Zhang, Q.; Chi, M.; Cheng, Q.; Yin, Y., Angewandte Chemie International Edition 2012, 51 (23), 5629-5633.
    84. Yang, Y.; Shi, J.; Kawamura, G.; Nogami, M., Scripta Materialia 2008, 58 (10), 862-865.
    85. Cui, Y.; Ren, B.; Yao, J.-L.; Gu, R.-A.; Tian, Z.-Q., The Journal of Physical Chemistry B 2006, 110 (9), 4002-4006.
    86. Pande, S.; Ghosh, S. K.; Praharaj, S.; Panigrahi, S.; Basu, S.; Jana, S.; Pal, A.; Tsukuda, T.; Pal, T., The Journal of Physical Chemistry C 2007, 111 (29), 10806-10813.
    87. Li, J.-F.; Zhang, Y.-J.; Ding, S.-Y.; Panneerselvam, R.; Tian, Z.-Q., Chemical reviews 2017, 117 (7), 5002-5069.
    88. Zhu, J.; Wu, N.; Zhang, F.; Li, X.; Li, J.; Zhao, J., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 204, 754-762.
    89. Bae, Y.; Kim, N. H.; Kim, M.; Lee, K. Y.; Han, S. W., Journal of the American Chemical Society 2008, 130 (16), 5432-5433.
    90. Zhang, Q.; Li, W.; Wen, L. P.; Chen, J.; Xia, Y., Chemistry–A European Journal 2010, 16 (33), 10234-10239.
    91. Wei, Q.; Li, B.; Li, C.; Wang, J.; Wang, W.; Yang, X., Journal of Materials Chemistry 2006, 16 (36), 3606-3608.
    92. Abdullah, A.; Altaf, M.; Khan, H. I.; Khan, G. A.; Khan, W.; Ali, A.; Bhatti, A. S.; Khan, S. U.; Ahmed, W., Chemical Physics 2018, 510, 30-36.
    93. Bai, T.; Tan, Y.; Zou, J.; Nie, M.; Guo, Z.; Lu, X.; Gu, N., The Journal of Physical Chemistry C 2015, 119 (51), 28597-28604.
    94. Chien, Y.-H.; Tsai, M.-F.; Shanmugam, V.; Sardar, K.; Huang, C.-L.; Yeh, C.-S., Nanoscale 2013, 5 (9), 3863-3871.
    95. Grześkiewicz, B.; Ptaszyński, K.; Kotkowiak, M., Plasmonics 2014, 9 (3), 607-614.
    96. Liu, C.; Mi, C. C.; Li, B. Q., IEEE Transactions on Nanobioscience 2008, 7 (3), 206-214.
    97. Li, C.; Huang, Y.; Lai, K.; Rasco, B. A.; Fan, Y., Food Control 2016, 65, 99-105.
    98. Cyriac, J.; Wleklinski, M.; Li, G.; Gao, L.; Cooks, R. G., Analyst 2012, 137 (6), 1363-1369.
    99. Yang, L.-K.; Su, Y.-Q.; Wu, X.-Y.; Zhang, D.-X.; Chen, Y.-L.; Yang, F.-Z.; Wu, D.-Y.; Tian, Z.-Q., Nanoscale 2015, 7 (21), 9563-9569.
    100. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., MRS bulletin 2005, 30 (5), 368-375.
    101. Guo, H.; Simpkins, B.; Caldwell, J. D.; Guo, J., AIP Advances 2015, 5 (10), 107149.

    無法下載圖示 校內:2024-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE