| 研究生: |
許秀蓮 Hsu, Hsiu-Lien |
|---|---|
| 論文名稱: |
探討奈米金屬表面結構對表面增強拉曼共振增益的影響 Exploring the surface structure effects of metal nanoparticles on surface-enhanced Raman resonance |
| 指導教授: |
孫亦文
Sun, I-Wen 黃志嘉 Huang, Chih-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 表面增強拉曼散射 、金奈米顆粒 、單寧酸 、保護劑效應 、離心轉速 、雙金屬奈米顆粒 、二次成長法 、消光係數 |
| 外文關鍵詞: | SERS, surface effect, secondary growth method, surfactant, extinction coefficient |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如何提升表面增強拉曼散射(SERS)效果是一項熱門的課題,但比較可惜的是,很少有文獻探討金屬奈米顆粒界面的影響,故本研究第一個部分針對保護劑影響作探討,使用單寧酸(TNA)同時作為保護劑及還原劑合成金奈米粒子,此材料相對於傳統的以溴化十六烷基三甲銨(CTAB)作為保護劑的金奈米粒子而言,具有較佳的SERS效果。此外,額外加入聚乙烯亞胺(PEI)達到動力學控制合成的金奈米顆粒,則有最優異的增強效果。我們也意外發現將純化奈米粒子的轉速調整,能再進一步增強。第二部分則是針對奈米粒子結構進行探討,使用銀奈米棱柱、方塊、球體進行金的成長,在相同金銀元素比條件中,形狀與消光係數扮演重要角色,直接影響SERS 的增益強度。
How to improve the surface-enhanced Raman scattering (SERS) is a hot topic, but unfortunately, there is a paucity of literature on the influence of the interface of metal nanoparticles. Therefore, the first part of this study explores the effects of protective agents, using tannic acid (TNA) as a protective agent and reducing agent to synthesize gold nanoparticles, which is compared with conventional cetyltrimethylammonium bromide (CTAB) has a better SERS effect. Furthermore, the addition of polyethyleneimine (PEI) to the kinetically controlled synthesis of gold nanoparticles, further enhance SERS effect. We also unexpectedly found that adjusting the centrifugal speed of the purified nanoparticles can affect the efficiency of signal enhancement. The second part is about the structure of nanoparticles. The silver nanoprisms, nanocubes and nanospheres are used for gold growth. In the same gold-silver element ratio, the shape and extinction coefficient play an important role, directly affecting the gain intensity of SERS.
1. Wang, F.; Cao, S.; Yan, R.; Wang, Z.; Wang, D.; Yang, H., Sensors 2017, 17 (11), 2689.
2. Tian, Z. Q.; Ren, B., Annu. Rev. Phys. Chem. 2004, 55, 197-229.
3. Sers, C.; Emmenegger, U.; Husmann, K.; Bucher, K.; Andres, A. C.; Schafer, R., J. Cell Biol. 1997, 136 (4), 935-944.
4. Ostroverkhova, O., Handbook of Organic Materials for Electronic and Photonic Devices. Woodhead Publishing: 2018.
5. Gu, X.; Trujillo, M. J.; Olson, J. E.; Camden, J. P., SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. In Annual Review of Analytical Chemistry, Vol 11, Bohn, P. W.; Pemberton, J. E., Eds. Annual Reviews: Palo Alto, 2018; Vol. 11, pp 147-169.
6. Mahmoud, M. A.; Garlyyev, B.; El-Sayed, M. A., The journal of physical chemistry letters 2014, 5 (23), 4088-4094.
7. Zhang, C. H.; Zhu, J.; Li, J. J.; Zhao, J. W., ACS Appl. Mater. Interfaces 2017, 9 (20), 17388-17399.
8. Zhong, L. B.; Liu, Q.; Wu, P.; Niu, Q. F.; Zhang, H.; Zheng, Y. M., Environ. Sci. Technol. 2018, 52 (10), 5812-5820.
9. Yang, L.; Hu, J.; He, L.; Tang, J.; Zhou, Y.; Li, J.; Ding, K., Chemical Engineering Journal 2017, 327, 694-704.
10. Feng, J.; Chen, L.; Xia, Y.; Xing, J.; Li, Z.; Qian, Q.; Wang, Y.; Wu, A.; Zeng, L.; Zhou, Y., ACS Biomaterials Science & Engineering 2017, 3 (4), 608-618.
11. Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M., Chemical Society Reviews 2017, 46 (13), 4042-4076.
12. Camden, J. P.; Dieringer, J. A.; Wang, Y.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P., Journal of the American Chemical Society 2008, 130 (38), 12616-12617.
13. Osberg, K. D.; Rycenga, M.; Harris, N.; Schmucker, A. L.; Langille, M. R.; Schatz, G. C.; Mirkin, C. A., Nano letters 2012, 12 (7), 3828-3832.
14. Rycenga, M.; Langille, M. R.; Personick, M. L.; Ozel, T.; Mirkin, C. A., Nano letters 2012, 12 (12), 6218-6222.
15. Kim, W.; Kim, N.; Park, J. W.; Kim, Z. H., Nanoscale 2016, 8 (2), 987-994.
16. Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N., Nano Research 2016, 9 (8), 2303-2318.
17. Liu, K.; Bai, Y.; Zhang, L.; Yang, Z.; Fan, Q.; Zheng, H.; Yin, Y.; Gao, C., Nano letters 2016, 16 (6), 3675-3681.
18. Chu, H.; Song, S.; Li, C.; Gibson, D., Coatings 2017, 7 (2), 26.
19. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P., The Journal of Physical Chemistry B 2005, 109 (22), 11279-11285.
20. Ye, J.; Hutchison, J. A.; Uji-i, H.; Hofkens, J.; Lagae, L.; Maes, G.; Borghs, G.; Van Dorpe, P., Nanoscale 2012, 4 (5), 1606-1611.
21. McNay, G.; Eustace, D.; Smith, W. E.; Faulds, K.; Graham, D., Applied spectroscopy 2011, 65 (8), 825-837.
22. Álvarez-Puebla, R. n. A., The journal of physical chemistry letters 2012, 3 (7), 857-866.
23. Haynes, C. L.; Van Duyne, R. P., The Journal of Physical Chemistry B 2003, 107 (30), 7426-7433.
24. Lee, K.-S.; El-Sayed, M. A., The Journal of Physical Chemistry B 2006, 110 (39), 19220-19225.
25. Starowicz, Z.; Wojnarowska-Nowak, R.; Ozga, P.; Sheregii, E., Colloid and polymer science 2018, 296 (6), 1029-1037.
26. Zeman, E. J.; Schatz, G. C., Journal of Physical Chemistry 1987, 91 (3), 634-643.
27. Han, Y.; Lupitskyy, R.; Chou, T.-M.; Stafford, C. M.; Du, H.; Sukhishvili, S., Analytical chemistry 2011, 83 (15), 5873-5880.
28. Ivanova, O. S.; Zamborini, F. P., Journal of the American Chemical Society 2009, 132 (1), 70-72.
29. Qi, H.; Alexson, D.; Glembocki, O.; Prokes, S., Nanotechnology 2010, 21 (21), 215706.
30. Yin, Y.; Li, Z.-Y.; Zhong, Z.; Gates, B.; Xia, Y.; Venkateswaran, S., Journal of Materials Chemistry 2002, 12 (3), 522-527.
31. Panzarini, E.; Mariano, S.; Carata, E.; Mura, F.; Rossi, M.; Dini, L., International journal of molecular sciences 2018, 19 (5), 1305.
32. Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M., Langmuir 2005, 21 (23), 10644-10654.
33. Tsai, T.-T.; Huang, T.-H.; Chang, C.-J.; Ho, N. Y.-J.; Tseng, Y.-T.; Chen, C.-F., Scientific reports 2017, 7 (1), 3155.
34. Thankappan, A.; Kalarikkal, N.; Thomas, S.; Padinjakkara, A., Polymeric and Nanostructured Materials: Synthesis, Properties, and Advanced Applications. CRC Press: 2018.
35. Huang, C.-J.; Chiu, P.-H.; Wang, Y.-H.; Chen, W. R.; Meen, T. H., Journal of The Electrochemical Society 2006, 153 (8), D129-D133.
36. Hou, H.; Chen, L.; He, H.; Chen, L.; Zhao, Z.; Jin, Y., Journal of Materials Chemistry B 2015, 3 (26), 5189-5196.
37. Franco, R.; Pedrosa, P.; Carlos, F. F.; Veigas, B.; Baptista, P. V., Handbook of nanoparticles 2016, 1339-1370.
38. Shah, M.; Badwaik, V.; Kherde, Y.; Waghwani, H. K.; Modi, T.; Aguilar, Z. P.; Rodgers, H.; Hamilton, W.; Marutharaj, T.; Webb, C., Front. Biosci 2014, 19 (1320), 10.2741.
39. Ziegler, C.; Eychmüller, A., The Journal of Physical Chemistry C 2011, 115 (11), 4502-4506.
40. Szunerits, S.; Spadavecchia, J.; Boukherroub, R., Reviews in Analytical Chemistry 2014, 33 (3), 153-164.
41. Collins, T.; Gordon-Wylie, S.; Bartos, M.; Horwitz, C.; Woomer, C.; Williams, S.; Patterson, R.; Vuocolo, L.; Paterno, S.; Strazisar, S., Green chemistry. Simon and Schuster Macmillan: New York: 1997; Vol. 2, pp 691-697.
42. Horváth, I. T.; Anastas, P. T., Introduction: green chemistry. ACS Publications: 2007.
43. Huang, X.; Wu, H.; Liao, X.; Shi, B., Green Chemistry 2010, 12 (3), 395-399.
44. Shankar, S. S.; Ahmad, A.; Pasricha, R.; Sastry, M., Journal of Materials Chemistry 2003, 13 (7), 1822-1826.
45. Govindaraju, K.; Basha, S. K.; Kumar, V. G.; Singaravelu, G., Journal of Materials Science 2008, 43 (15), 5115-5122.
46. Ismail, E.; Saqer, A.; Assirey, E.; Naqvi, A.; Okasha, R., International journal of molecular sciences 2018, 19 (9), 2612.
47. Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P., Applied microbiology and biotechnology 2006, 69 (5), 485-492.
48. Lee, C.-W.; Ko, H.; Chang, S.-H. G.; Huang, C.-C., Green Chemistry 2018, 20 (23), 5318-5326.
49. Galanakis, C. M., Nutraceutical and functional food components: Effects of innovative processing techniques. Academic Press: 2016.
50. Quideau, S.; Deffieux, D.; Douat‐Casassus, C.; Pouysegu, L., Angewandte Chemie International Edition 2011, 50 (3), 586-621.
51. Cannavino, S. A.; King, C. A.; Ferrara, D. W. In Green Chemistry Techniques for Gold Nanoparticles Synthesis, APS March Meeting Abstracts, 2016.
52. Mata, R.; Nakkala, J. R.; Sadras, S. R., Colloids and Surfaces B: Biointerfaces 2016, 143, 499-510.
53. Jin, W.; Xu, W.; Ge, H.; Li, Y.; Li, B., RSC Advances 2015, 5 (34), 26496-26503.
54. Ahmad, T., Journal of Nanotechnology 2014, 2014.
55. Suherman, A. L.; Zampardi, G.; Amin, H. M.; Young, N. P.; Compton, R. G., Physical Chemistry Chemical Physics 2019, 21 (8), 4444-4451.
56. Benz, F.; Chikkaraddy, R.; Salmon, A.; Ohadi, H.; De Nijs, B.; Mertens, J.; Carnegie, C.; Bowman, R. W.; Baumberg, J. J., The journal of physical chemistry letters 2016, 7 (12), 2264-2269.
57. Chen, H.-C.; Hsu, T.-C.; Liu, Y.-C.; Yang, K.-H., Rsc Advances 2014, 4 (21), 10553-10559.
58. Zhang, L.; Zhang, Y.; Ahn, J.; Wang, X.; Qin, D., Chemistry of Materials 2019, 31 (3), 1057-1065.
59. Liu, Y.; Zhou, J.; Yuan, X.; Jiang, T.; Petti, L.; Zhou, L.; Mormile, P., RSC Advances 2015, 5 (84), 68668-68675.
60. Ali, M. R.; Snyder, B.; El-Sayed, M. A., Langmuir 2012, 28 (25), 9807-9815.
61. Makkar, H.; Becker, K., Journal of Agricultural and Food Chemistry 1996, 44 (5), 1291-1295.
62. Trigari, S.; Rindi, A.; Margheri, G.; Sottini, S.; Dellepiane, G.; Giorgetti, E., Journal of Materials Chemistry 2011, 21 (18), 6531-6540.
63. Saute, B.; Premasiri, R.; Ziegler, L.; Narayanan, R., Analyst 2012, 137 (21), 5082-5087.
64. Stoerzinger, K. A.; Lin, J. Y.; Odom, T. W., Chemical science 2011, 2 (8), 1435-1439.
65. Doyen, M.; Goole, J.; Bartik, K.; Bruylants, G., Journal of colloid and interface science 2016, 464, 160-166.
66. de la Rica, R., Nanoscale 2017, 9 (47), 18855-18860.
67. Huang, Y.; Lin, D.; Li, M.; Yin, D.; Wang, S.; Wang, J., Sensors 2019, 19 (7), 1554.
68. Bai, T.; Wang, M.; Cao, M.; Zhang, J.; Zhang, K.; Zhou, P.; Liu, Z.; Liu, Y.; Guo, Z.; Lu, X., Analytical and bioanalytical chemistry 2018, 410 (9), 2291-2303.
69. Sun, J.; Wang, X.; Liu, J.; Wan, P.; Liao, Q.; Wang, F.; Luo, L.; Sun, X., RSC Advances 2014, 4 (67), 35263-35267.
70. Monga, A.; Pal, B., RSC Advances 2015, 5 (50), 39954-39963.
71. Harris, D. C., Quantitative chemical analysis. W.H. Freeman and Co.: New York, 2010.
72. Sutter, E. A.; Sutter, P. W., Nanoscale 2017, 9 (3), 1271-1278.
73. Sun, Y.; Xia, Y., Science 2002, 298 (5601), 2176-2179.
74. Csapó, E.; Oszkó, A.; Varga, E.; Juhász, Á.; Buzás, N.; Kőrösi, L.; Majzik, A.; Dékány, I., Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 415, 281-287.
75. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y., Advanced Materials 2013, 25 (44), 6313-6333.
76. Srnová-Šloufová, I.; Lednický, F.; Gemperle, A.; Gemperlová, J., Langmuir 2000, 16 (25), 9928-9935.
77. Shahjamali, M. M.; Bosman, M.; Cao, S.; Huang, X.; Saadat, S.; Martinsson, E.; Aili, D.; Tay, Y. Y.; Liedberg, B.; Loo, S. C. J., Advanced Functional Materials 2012, 22 (4), 849-854.
78. Jin, Y.; Dong, S., The Journal of Physical Chemistry B 2003, 107 (47), 12902-12905.
79. Liu, S.; Chen, N.; Li, L.; Pang, F.; Chen, Z.; Wang, T., Optical Materials 2013, 35 (3), 690-692.
80. Lu, L.; Burkey, G.; Halaciuga, I.; Goia, D. V., Journal of colloid and interface science 2013, 392, 90-95.
81. Huang, W.-S.; Sun, I.-W.; Huang, C.-C., Journal of Materials Chemistry A 2018, 6 (27), 13041-13049.
82. Sanedrin, R. G.; Georganopoulou, D. G.; Park, S.; Mirkin, C. A., Advanced Materials 2005, 17 (8), 1027-1031.
83. Gao, C.; Lu, Z.; Liu, Y.; Zhang, Q.; Chi, M.; Cheng, Q.; Yin, Y., Angewandte Chemie International Edition 2012, 51 (23), 5629-5633.
84. Yang, Y.; Shi, J.; Kawamura, G.; Nogami, M., Scripta Materialia 2008, 58 (10), 862-865.
85. Cui, Y.; Ren, B.; Yao, J.-L.; Gu, R.-A.; Tian, Z.-Q., The Journal of Physical Chemistry B 2006, 110 (9), 4002-4006.
86. Pande, S.; Ghosh, S. K.; Praharaj, S.; Panigrahi, S.; Basu, S.; Jana, S.; Pal, A.; Tsukuda, T.; Pal, T., The Journal of Physical Chemistry C 2007, 111 (29), 10806-10813.
87. Li, J.-F.; Zhang, Y.-J.; Ding, S.-Y.; Panneerselvam, R.; Tian, Z.-Q., Chemical reviews 2017, 117 (7), 5002-5069.
88. Zhu, J.; Wu, N.; Zhang, F.; Li, X.; Li, J.; Zhao, J., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 204, 754-762.
89. Bae, Y.; Kim, N. H.; Kim, M.; Lee, K. Y.; Han, S. W., Journal of the American Chemical Society 2008, 130 (16), 5432-5433.
90. Zhang, Q.; Li, W.; Wen, L. P.; Chen, J.; Xia, Y., Chemistry–A European Journal 2010, 16 (33), 10234-10239.
91. Wei, Q.; Li, B.; Li, C.; Wang, J.; Wang, W.; Yang, X., Journal of Materials Chemistry 2006, 16 (36), 3606-3608.
92. Abdullah, A.; Altaf, M.; Khan, H. I.; Khan, G. A.; Khan, W.; Ali, A.; Bhatti, A. S.; Khan, S. U.; Ahmed, W., Chemical Physics 2018, 510, 30-36.
93. Bai, T.; Tan, Y.; Zou, J.; Nie, M.; Guo, Z.; Lu, X.; Gu, N., The Journal of Physical Chemistry C 2015, 119 (51), 28597-28604.
94. Chien, Y.-H.; Tsai, M.-F.; Shanmugam, V.; Sardar, K.; Huang, C.-L.; Yeh, C.-S., Nanoscale 2013, 5 (9), 3863-3871.
95. Grześkiewicz, B.; Ptaszyński, K.; Kotkowiak, M., Plasmonics 2014, 9 (3), 607-614.
96. Liu, C.; Mi, C. C.; Li, B. Q., IEEE Transactions on Nanobioscience 2008, 7 (3), 206-214.
97. Li, C.; Huang, Y.; Lai, K.; Rasco, B. A.; Fan, Y., Food Control 2016, 65, 99-105.
98. Cyriac, J.; Wleklinski, M.; Li, G.; Gao, L.; Cooks, R. G., Analyst 2012, 137 (6), 1363-1369.
99. Yang, L.-K.; Su, Y.-Q.; Wu, X.-Y.; Zhang, D.-X.; Chen, Y.-L.; Yang, F.-Z.; Wu, D.-Y.; Tian, Z.-Q., Nanoscale 2015, 7 (21), 9563-9569.
100. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., MRS bulletin 2005, 30 (5), 368-375.
101. Guo, H.; Simpkins, B.; Caldwell, J. D.; Guo, J., AIP Advances 2015, 5 (10), 107149.
校內:2024-08-14公開