簡易檢索 / 詳目顯示

研究生: 王頎鈞
Wang, Chi-Chun
論文名稱: 適用於含隨機切換多重子系統並具輸入飽和限制之未知資料取樣系統的追蹤器
Tracker Design for the Unknown Sampled-Data System Consisting of Randomly Switched Multi-Subsystems with Input Constraint
指導教授: 蔡聖鴻
Tsai, S. H. Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 65
中文關鍵詞: 觀測/卡爾曼濾波器鑑別法輸入飽和限制數位重新設計模型預測控制主動切換機制
外文關鍵詞: Observer/Kalman filter identification, input constraint, digital redesign, model predictive control, active switching mechanism
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在某些情況下,一包含多重子系統之未知系統會被動地由一個子系統切換到另一子系統。在本論文中,觀測/卡爾曼濾波器鑑別法被採用來鑑別每個未知子系統,並提出一具有主動切換機制的軌跡追蹤器。為了解決未知系統的輸入飽和限制的問題,提出了一個結合數位重新設計的模型預測控制,此修改型模型預測控制可以有系統地調整權重,使控制力處於我們所希望的範圍內,以解決輸入飽和限制的問題,並且不會失去良好的追蹤效率。此修改型模型預測控制也可預測未來的輸出並藉此即時識別系統模型切換的時機,並透過主動切換機制,轉換到相對應的控制器以維持良好的追蹤效果。

    In some cases, an unknown system consisting of multi-subsystems would switch from one subsystem to another passively. In this thesis, the off-line observer/Kalman filter identification (OKID) method is adopted to identify each unknown subsystem, and an active switching mechanism is presented for a passively switched multi-input multi-output (MIMO) subsystems. To resolve the input constraint problem for the unknown system, the modified observer-based model predictive control (MPC) combining with prediction-based digital redesign is proposed, without losing the good tracking performance as possible. The proposed modified model predictive control scheme can predict the future output and identify the switching instant immediately, and it systematically compresses a huge control input within the desired range by adjusting the weighting matrix of the cost function for the linear time-invariant (LTI) input-constrained system.

    中文摘要 I Abstract II Acknowledgments III List of Contents IV List of Figures VI Chapter 1. Introduction 1 2. Problem Description 4 3. Observer/Kalman Filter Identification 6 3.1 Basic observer equation 7 3.2 Computation of Markov parameters 9 3.3 Eigensystem realization algorithm 11 3.4 Prediction-based digital redesign observer 14 4. Prediction-Based Digital Redesign 16 4.1 Linear quadratic analog tracker design 17 4.2 Digital redesign of the linear quadratic analog tracker 18 5. Model Predictive Control 22 5.1 Model predictive control 23 5.2 Receding horizon control 25 5.3 A new input constraint design method 26 5.4 Modified observer-based model predictive control 28 5.5 A new input constraint design method based on modified observer-based model predictive control 31 5.6 Model predictive control based on prediction-based digital redesign 33 6. Design Procedure 37 7. An Illustrative Example 39 8. Conclusion 62 References 63

    [1] Dedieu, H. and Ogorzalek, M. J., “Controlling chaos in Chua’s circuit via sampled inputs,” International Journal of Bifurcation Chaos, vol. 4(2), pp. 447-455, 1994.
    [2] Gilbert, E. G., “Controllability and observability in multivariable control systems,” SIAM Journal on Control, vol. 2(1), pp. 128-151, 1963.
    [3] Guo, S. M. and Peng, Z. H., “An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach,” International Journal of General Systems, vol. 34, pp.421-449, 2005.
    [4] Guo, S. M., Shieh, L. S., Lin, C. F., and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid systems,” International Journal Bifurcation and Chaos, vol. 11(4), pp. 1079-1113, 2001.
    [5] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach”, IEEE Transcations on Circuits and Systems– I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
    [6] Ho, B. L. and Kalman, R. E., “Effective construction of linear state-variable models from input-output data,” in Proc. 3rd Ann. Allerton Conf. on Circuits Syst. Theory, Monticello, IL, pp. 449-459, 1965.
    [7] Hu, T., Teel, A. R., and Zaccarian, L., “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol. 44(2), pp. 512-519, 2008.
    [8] Juang, J. N., Applied System Identification, Englewood Cliffs. NJ, Prentice-Hall, 1994.
    [9] Juang, J. N., Phan, M. Q., Horta, L. G., and Longman, R. W., “Identification of observer/Kalman filter Markov parameters: Theory and experiments,” Journal of Guidance, Control, and Dynamics, vol. 16, pp. 320-329, 1993.
    [10] Juang, J. N. and Pappa, R. S., “Effects of noise on modal parameters identified by the eigensystem realization algorithm,” Journal of Guidance, Control, and Dynamics, vol. 3, pp. 294-303, 1986.
    [11] Kim, J. S., Yoon, T. W., Shim, H., and Seo, J. H., “Switching adaptive output feedback model predictive control for a class of input-constrained linear plants,” IET Control Theory and Application, vol. 2(7), pp. 573-582, 2008.
    [12] Kuo, B. C., Digital Control Systems. Holt, Rinehart and Winston, New York, 1980.
    [13] Lewis, F. L. and Syrmos, V. L., Optimal Control. John Wiley & Sons, New York 1995.
    [14] Maeder, U., Cagienard, R., and Morari, M., Explicit Model Predictive Control. Springer-Berlin, Heidelberg, 2007.
    [15] Shieh, L. S., Chen, G., and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of Systems Science, vol. 23(6), pp. 839-854, 1992.
    [16] Shieh, L. S., Wang, W. M., and Appu Panicker, M.K., “Design of PAM and PWM digital controller for cascaded analog system,” ISA Transactions, vol. 37(3), pp. 201-213, 1978.
    [17] Solmaz, S. K. and Faryar, J., “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54(8), pp. 1934-1939, 2009.
    [18] Sun, Z. and Ge, S., Switched linear systems: Control and Design. Springer Verlag, 2005.
    [19] Tarbouriech, S. and Turner, M., “Anti-windup design: an overview of some recent advances and open problems,” IET Control Theory Application, vol. 3(1), pp. 1-19, 2009.
    [20] Tiwari, P. Y., Mulder, E. F., and Kothare, M. V., “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52(12), pp. 2341-2345, 2007.
    [21] Tsai, J. S. H., Du, Y. Y., Zhuang, W. Z., Guo, S. M., Chen, C. W., and Shieh, L. S., “Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints,” IET Control Theory Applications, vol. 5(3), pp. 447-464, 2011.
    [22] Tsai, J. S. H., Huang, C.C., Guo, S. M., and Shieh, L. S., “Continuous to discrete model conversion for the system with a singular system matrix based on matrix sign function,” Applied Mathematical Modelling, vol. 35(8), pp. 3893-3904, 2011.
    [23] Wang, L. P., Model Predictive Control System Design and Implementation using MATLAB. Springer, 2009.
    [24] Wu, F. and Lu, B., “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52(4), pp. 305-322, 2004.
    [25] Zaccarian, L. and Teel, A. R., “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49(11), pp. 2055-2061, 2004.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE