簡易檢索 / 詳目顯示

研究生: 許煜亮
Hsu, Yu-Liang
論文名稱: 利用Wiener型遞迴類神經網路及其最小體現演算法於未知動態系統鑑別及控制
Using a Wiener-Type Recurrent Neural Network with a Minimal Realization Algorithm for Unknown Dynamic System Identification and Control
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 78
中文關鍵詞: 最小體現演算法系統鑑別
外文關鍵詞: system identification, minimal realization algorithm
相關次數: 點閱:93下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一個基於Wiener模式所發展出一種新型遞迴類神經網路,其結合了相關具系統化的鑑別演算法來對動態系統鑑別並找出其最小狀態空間表示式。此一新穎的類神經網路包含了下列幾項優點: 1) 線性動態子系統及非線性靜態子系統可以將系統輸出表示成一個經由非線性轉換之線性狀態空間表示的網路; 2) 網路的特性可經由發展成熟且完整的線性系統理論來分析其狀態空間表示而得知;3) 此網路架構的大小可以由未知動態系統的狀態變數數目來決定。為了有效的利用未知動態系統的輸入輸出資料來加以鑑別,我們發展了一套包含維度估測、參數初始化及參數學習方法的系統化鑑別演算法。False nearest neighbors (FNN)演算法將利用輸入輸出資料所找出的最小嵌入維度當作系統的維度;eigensystem realization algorithm (ERA)利用所判定出來的維度來加以初始化狀態空間表示的參數。最後,為了更進一步的改善整個鑑別的效能,我們利用以ordered derivatives為基礎的遞迴參數學習方法來使最小狀態空間表示的參數達到最佳化。將未知動態系統以Wiener型遞迴類神經網路鑑別後,我們可以設計一個簡易但有效之線性迴饋控制器來執行對未知動態系統的控制任務。經由電腦模擬可得知,利用本論文所提出的演算法來進行動態系統鑑別已經成功地驗證了下列兩點: 1) 此遞迴類神經網路的維度是最小的; 2) 此網路能非常精確地模擬未知系統的動態行為並達到滿意的效能; 3) 此控制方法可以成功地被驗證其對於未知非線性系統控制問題之效能。

    This study presents a Wiener-type recurrent neural network with a systematic identification algorithm and a control strategy for identifying and controlling unknown dynamic nonlinear systems. The proposed Wiener-type recurrent network resembles the conventional Wiener model that consists of a dynamic linear subsystem cascaded with a static nonlinear subsystem. The novelties of our network include: 1) the two subsystems are integrated into a single network whose output is expressed by a nonlinear transformation of a linear state-space equation; 2) the characteristics of the trained network can be analyzed by its associated state-space equation using the well-develop theory of linear systems; and 3) the size of the network structure is determined by the number of state variables (or the system order) of the unknown systems to be identified. A systematic identification algorithm that consists of an order determination procedure, a parameterization procedure, and an online learning procedure has been developed to effectively identify unknown systems from their input-output data. The false nearest neighbors (FNN) algorithm was adopted to acquire a minimal embedding dimension from the input-output data as the system order, and then the eigensystem realization algorithm (ERA) was used to initialize a best-fit state-space representation according to the acquired system order. To improve the overall identification performance, an online parameter learning algorithm based on an ordered derivatives and momentum terms has been derived. Subsequently, a simple feedback linear controller can be designed to control the unknown dynamic nonlinear systems without much complexity. Computer simulations on dynamic system identification and control problems have successfully validated the followings: 1) the dimension/order of the recurrent network representation is minimal, 2) the proposed network is able to closely emulate the behavior of the unknown dynamical system with a satisfactory performance, and 3) the proposed control scheme can control unknown nonlinear systems successfully.

    CHINESE ABSTRACT i ABSTRACT iii ACKNOWLEDGEMENT v LIST OF TABLES viii LIST OF FIGURES ix 1 Introduction 1-1 1.1 Motivation 1-1 1.2 Literature Survey 1-2 1.3 Purpose of the Study 1-8 1.4 Organization of the Thesis 1-9 2 Block-Oriented-Network-Based Models 2-1 2.1 General Block-Oriented Models 2-1 2.2 MIMO Block-Oriented Models 2-3 2.3 Representations of the Block-Oriented Structures 2-4 2.3.1 Linear Submodels 2-4 2.3.2 Nonlinear Submodels 2-7 2.3.3 State space models 2-9 2.4 Structure of Wiener-Type RNN 2-10 3 Minimal Realization Algorithm and Control Strategy 3-1 3.1 Minimal Structure Realization Algorithm 3-1 3.2 Parameter Initialization Algorithm 3-6 3.2.1 Eigensystem Realization Algorithm 3-7 3.2.2 Computational Steps of ERA 3-11 3.3 Parameter Learning Algorithm 3-12 3.3.1 Ordered Derivative and Real-Time Recurrent Learning 3-13 3.3.2 Recursive Recurrent Learning Algorithm 3-16 3.4 Implementation of Minimal Realization Algorithm of Wiener-type RNN 3-20 3.5 Control Strategy for Wiener-type RNN 3-23 3.5.1 Linear Controller Design Scheme 3-24 3.5.2 Parameter Learning Algorithm of the Linear Controller 3-25 4 Simulation Results 4-1 5 Conclusions and Future Work 5-1 5.1 Conclusions 5-1 5.2 Future Work 5-2 References

    [1] H. Akaike, “Statistical predictor identification,” Ann. Inst. Statist. Math., vol. 22, no. 1, pp. 203-217, 1970.
    [2] H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automatic Control, vol. AC-19, no. 6, pp. 716-723, Dec. 1974.
    [3] H. D. I. Abarbanel and M. B. Kennel, “Local false nearest neighbors and dynamical dimensions from observed chaotic data,” Phys. Rev. E, vol. 47, no. 5, pp. 3057-3068, 1993.
    [4] H. AI-Duwaish, M. N. Karim, and V. Chandrasekar, “Use of multilayer feedforward neural networks in identification and control of Wiener model,” IEE Proc. Control Theory Appl., vol. 143, no. 3, pp. 255-258, May. 1996.
    [5] H. Al-Duwaish and M. N. Karim, “A new method for the identification of Hammerstein model,” Automatica, vol. 33, no. 10, pp. 1871-1875, 1997.
    [6] S. Adwankar and R. N. Banavar, “A recurrent network for dynamic system identification,” International Journal of Systems Science, vol. 28, no. 12, pp. 1239-1250, 1997.
    [7] V. Arto, P. Hannu, and A. Halme, “Modeling of chromatographic separation process with Wiener-MLP representation,” Journal of Process Control, vol. 11, no. 5, pp. 443-458, 2001.
    [8] R. J. Bhansali and D. Y. Downham, “Some properties of the order of an autoregressive model selected by a generalization of Akaike’s EFP criterion,” Biometrika, vol. 64, no. 3, pp. 547-551, 1977.
    [9] S. A. Billings and S. Y. Fakhouri, “Identification of nonlinear systems using the Wiener model,” Electronics Letters, vol. 13, no. 17, pp. 502-504, 1977.
    [10] S. A. Billings, “Identification of nonlinear systems- A survey,” IEE Proc., Part D: Control Theory and Applications, vol. 127, no. 6, pp. 272-285, 1980.
    [11] M. Benson and R. A. Carrasco, “Recurrent neural network array for CDMA mobile communication systems,” Electronics Letters, vol. 33, no. 25, pp. 2105-2106, 1997.
    [12] J. D. Bomberger and D. E. Seborg, “Determination of model order for NARX models directly from input-output data,” Journal of Process Control, vol. 8, no. 5-6, pp. 459-468, 1998.
    [13] D. Bernal and B. Gunes, “Performance of an observer state-space identification in the presence of mild nonlinearities,” in Proc. American Control Conf., vol. 2, pp. 986-990, 2000.
    [14] E. W. Bai, “Frequency domain identification of Wiener models,” Automatica, vol. 39, no. 9, pp. 1521-1530, 2003.
    [15] S. I. Biagioal, O. E. Agamennoni, and J. L. Figueroa, “H∞ control of a Wiener-type system,” Int. J. Control, vol. 77, no. 6, pp. 572-583, 2004.
    [16] S. Chen, S. A. Billings, and P. M. Grant, “Non-linear system identification using neural networks,” Int. J. Control, vol. 51, no. 6, pp. 1191-1214, 1990.
    [17] W. Y. Chen, Y. F. Liao, and S. H. Chen, “Speech recognition with hierarchical recurrent neural networks,” Pattern Recognition, vol. 28, no. 6, pp. 795-805, 1995.
    [18] J. S. Cho, Y. W. Kim, and D. J. Park, “Identification of nonlinear dynamic systems using higher order diagonal recurrent neural network,” Electronics Letters, vol. 33, no. 25, pp. 2133-2135, 1997.
    [19] G. Chen, Y. Chen, and H. Ogmen, “Identifying chaotic systems via a Wiener-type cascade model,” IEEE Control System Magazine, vol. 17, no. 5, pp. 29-36, Oct. 1997.
    [20] H. F. Chen, “Recursive identification for Wiener model with discontinuous piece-wise linear function,” IEEE Trans. Automatic Control, vol. 51, no. 3, pp. 390-400, 2006.
    [21] C. L. Chang, K. W. Fan, I. F. Chung, and C. T. Lin, “A recurrent fuzzy coupled cellular neural network system with automatic structure and template learning,” IEEE Trans. Circuits and Systems-II, vol. 53, no. 8, pp. 602-606, 2006.
    [22] A. Delgado, C. Kambhampati, and K. Warwick, “Dynamic recurrent neural network for system identification and control,” IEE Proc. Control Theory Appl., vol. 142, no. 4, pp. 307-314, 1995.
    [23] J. P. Draye, D. Pavisic, G. Cheron, and G. Libert, “An inhibitory weight initialization improves the speed and quality of recurrent neural networks learning,” Neurocomputing, vol. 16, no. 1, pp. 207-224, 1997.
    [24] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 3rd ed. Reading, MA: Addison-Wesley, 1997.
    [25] Y. Fang and T. W. S. Chow, “Orthogonal Wavelet neural networks applying to identification of Wiener model,” IEEE Trans. Circuits and Systems-I, vol. 47, no. 4, pp. 591-593, 2000.
    [26] J. Geweke and R. Meese, “Estimating regression models of finite but unknown order,” Int. Economic Review, vol. 22, no. 1, pp. 55-70, 1981.
    [27] U. M. Garca-Palomares, T. J. Wu, and A. Sepulveda, “The weighted average information criterion for order selection in time series and regression models,” Statistics and Probability Letters, vol. 39, no. 1, pp. 1-10, 1998.
    [28] M. A. Gonzalez-Olvera and Y. Tang, “A new recurrent neurofuzzy network for identification of dynamic systems,” Fuzzy Sets and Systems, vol. 158, no. 10, pp. 1023-1035, 2007.
    [29] B. L. Ho and R. E. Kalman, “Effective construction of linear state-variable models from input/output data,” in Proc. 3rd Annual Allerton Conf. Circuit and System Theory, vol. 14, pp. 449-459, 1965.
    [30] E. J. Hannan and B. G. Quinn, “The determination of the order of an autoregression,” Journal of the Royal Statistical Society, vol. 41, no. 2, pp. 190-195, 1979.
    [31] I. W. Hunter and M. J. Korenberg, “The identification of nonlinear biological systems: Wiener and Hammerstein cascade models,” Biol. Cybern, vol. 55, pp. 135-144, 1986.
    [32] C. M. Hurvich and C. L. Tsai, “Regression and time series model selection in small samples,” Biometrika, vol. 76, no. 2, pp. 297-307, 1989.
    [33] X. He and H. Asada, “A new method for identifying orders of input-output models for nonlinear dynamic systems,” in Proc. Automatic Control Conf., pp. 2520-2523, 1993.
    [34] H. P. Huang, M. W. Lee, and Y. T. Tang, “Identification of Wiener model using relay feedback test,” Journal of Chemical Engineering of Japan, vol. 31, no. 4, pp. 604-612, 1998.
    [35] R. P. Hernandez, J. A. Gallegos, and J. A. H. Reyes, “Simple recurrent neural network: A neural network structure for control systems,” Neurocomputing, vol. 23, no. 1-3, pp. 277-289, 1998.
    [36] J. N. Juang and R. S. Pappa, “An eigensystem realization algorithm for modal parameter identification and model reduction,” J. Guidance, vol. 8, no. 5, pp. 620-627, 1985.
    [37] C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy inference network,” IEEE Trans. Neural Networks, vol. 10, no. 4, pp. 828-845, 1999.
    [38] B. G. Jeong, K. Y. Yoo, and H. K. Rhee, “Nonlinear model predictive control using a Wiener model of a continuous methyl methacrylate polymerization reactor” Ind. Eng. Chem. Res., vol. 40, no. 25, pp. 5968-5977, 2001.
    [39] A. Janczak, “Comparison of four gradient-learning algorithms for neural network Wiener models,” International Journal of Systems Sciences, vol. 34, no. 1, pp. 21-35, 2003.
    [40] A. Janczak, Identification of Nonlinear Systems Using Neural Networks and Polynomial Models. New York: Springer-Verlag, 2005.
    [41] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A, vol. 45, no. 6, pp. 3403-3411, 1992.
    [42] A. Kalafatis, N. Arifin, L. Wang, and W. R. Cluett, “A new approach to the identification of pH processes based on the Wiener model,” Chemical Engineering Science, vol. 50, no. 23, pp. 3693-3701, 1995.
    [43] A. Kalafatis, L. Wang, and W. R. Cluett, “Identification of Wiener-type nonlinear systems in a noisy environment,” Int. J. Control, vol. 66, no. 6, pp. 923-941, 1997.
    [44] A. A. Kumar, M. Chidambaram, and V. S. R. Rao, “Nonlinear PI controller for pH process,” Chem. Eng. Comm., vol. 191, no. 2, pp. 241-261, 2004.
    [45] A. D. Kalafatis, L. Wang, and W. R. Cluett, “Linearizing feedforward-feedback control of pH processes based on the Wiener model,” Journal of Process Control, vol. 15, no. 1, pp. 103-112, 2005.
    [46] S. Lakshminarayanan, S. L. Shah, and K. Nandakumar, “Identification of Hammerstein models using multivariate statistical tools,” Chemical Engineering Science, vol. 50, no. 22, pp. 3599-3613, 1995.
    [47] L. Ljung, System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall, 1999.
    [48] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 349-366, 2000.
    [49] C. T. Lin, C. L .Chang, and W. C. Cheng, “A recurrent fuzzy cellular neural network system with automatic structure and template learning,” IEEE Trans. Circuits and Systems-I, vol. 51, no. 5, pp. 1024-1035, 2004.
    [50] C. L. Mallows, “Some comments on Cp,” Technometrics, vol. 15, pp. 661-675, 1973.
    [51] A. McQuarrie, R. Shumway, and C. L. Tsai, “The model selection criterion AICu,” Statistics and Probability Letters, vol. 34, no. 3, pp. 1-10, 1998.
    [52] A. D. McQuarrie, “A small-sample correction for the Schwarz SIC model selection criterion,” Statistics and Probability Letters, vol. 44, no. 1, pp. 86-89, 1999.
    [53] P. A. Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model for dynamic system identification,” IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 32, no. 2, pp. 176-190, 2002.
    [54] K. S. Narendra and P. G. Gallman, “An iterative method for the identification of nonlinear systems using a Hammerstein model,” IEEE Trans. Automatic Control, vol. 11, no. 3, pp. 546-550, 1966.
    [55] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural network,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4-27, 1990.
    [56] X. Ni, M. Verhaegen, A. J. Krijgsman, and H. B. Verbruggen, “A new method for identification and control of nonlinear dynamic systems,” Engng. Applic. Artif. Intell, vol. 9, no. 3, pp. 231-243, 1996.
    [57] S. J. Norquay, A. Palazoglu, and J. A. Romagnoli, “Application of Wiener model predication control (WMPC) to a pH neutralization experiment,” IEEE Trans. Control Systems Technology, vol. 7, no. 4, pp. 437-445, 1999.
    [58] J. M. Nichols and J. D. Nichols, “Attractor reconstruction for non-linear systems: A methodological note,” Mathematical Biosciences, vol. 171, no. 1, pp. 21-32, 2001.
    [59] O. Nelles, Nonlinear System Identification. New York: Springer-Verlag, 2001.
    [60] S. Nagammai, N. Sivakumaran, and T. K. Radhakrishnan, “Control system design for a neutralization process using block oriented models,” Instrumentation Science and Technology, vol. 34, no. 6, pp. 653-667, 2006.
    [61] S. Osowski, “New approach to selection of initial values of weights in neural function approximation,” Electronics Letters, vol. 29, no. 3, pp. 313-315, 1993.
    [62] D. T. Pham and X. Liu, “Identification of linear and nonlinear dynamic systems using recurrent neural networks,” Artificial Intelligence in Engineering, vol. 8, no. 1, pp. 67-75, 1993.
    [63] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural networks: A survey,” IEEE Trans. Neural Networks, vol. 6, no. 5, pp. 1212-1228, 1995.
    [64] J. Rissanen, “Modeling by the shortest data description,” Automatica, vol. 14, no. 5, pp. 465-471, 1978.
    [65] C. Rhodes and M. Morari, “The false nearest neighbors algorithm: An overview,” Computers Chem. Engng., vol. 21, pp. S1149-S1154, 1997.
    [66] C. Rhodes and M. Morari, “Determining the model order of nonlinear input/output systems,” AIChE Journal, vol. 44, no. 1, pp. 151-163, 1998.
    [67] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6, no. 2, pp. 461-464, 1978.
    [68] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neuron networks for identification and control of dynamical systems,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 306-319, 1994.
    [69] I. H. Song and H. K. Rhee, “Nonlinear control of polymerization reactor by Wiener predictive controller based on one-step subspace identification,” Ind. Eng. Chem. Res., vol. 43, no. 23, pp. 7261-7274, 2004.
    [70] S. W. Sung and J. Lee, “Modeling and control of Wiener-type processes,” Chemical Engineering Science, vol. 59, no. 7, pp. 1515-1521, 2004.
    [71] P. Saha, S. H. Krishnan, V. S. R. Rao, and S. C. Patwardhan, “Modeling and predictive control of MIMO nonlinear systems using Wiener-laguerre models,” Chem. Eng. Comm., vol. 191, no. 8, pp. 1083-1119, 2004.
    [72] I. Skrjanc, S. Blazic, and O. E. Agamennoni, “Interval fuzzy modeling applied to Wiener models with uncertainties,” IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 5, pp. 1092-1095, 2005.
    [73] A. C. Tsoi and A. D. Back, “Locally recurrent globally feedforward networks: A critical review of architectures.” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 229-239, 1994.
    [74] G. Thimm and E. Fiesler, “High-order and multilayer perceptron initialization,” IEEE Trans. Neural Networks, vol. 8, no. 2, Mar. 1997.
    [75] J. Voros, “Parameter identification of Wiener systems with discontinuous nonlinearities,” Systems & Control Letters, vol. 44, no. 5, pp. 363-372, 2001.
    [76] P. Werbos, “Beyond Regression: New Tools for Prediction and Analysis in the Behavior Sciences,” Ph.D. dissertation, Harvard Univ., Cambridge, MA, 1974.
    [77] R. J. William and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” Neural Computation, vol. 1, pp. 270-280, 1989.
    [78] T. Wigren, “Recursive prediction error identification using the nonlinear Wiener model,” Automatica, vol. 29, no. 4, pp. 1011-1025, 1993.
    [79] J. S. Wang and Y. P. Chen, “A fully automated recurrent neural network for unknown dynamic system identification and control,” IEEE Trans. Circuits and Systems-I, vol. 53, no. 6, pp. 1363-1372, 2006.
    [80] M. Xu, G. Chen, and Y. T. Tian, “Identifying chaotic systems using Wiener and Hammerstein cascade models,” Mathematical and Computer Modelling, vol. 33, no. 4, pp. 483-493, 2001.
    [81] Y. F. Yam, T. W. S. Chow, and C. T. Leung, “A new method in determining initial weights of feedforward neural networks for training enhancement,” Neurocomputing, vol. 16, no. 1, pp. 23-32, 1997.
    [82] O. Yamanaka, N. Yoshizawa, H. Ohmori, and A. Sano, “Adaptive control of Wiener-type nonlinear systems using neural networks,” Electrical Engineering in Japan, vol. 117-C, no. 5, pp. 609-617, 1997.
    [83] J. Y. F. Yam and T. W. S. Chow, “A weight initialization method for improving training speed in feedforward neural network,” Neurocomputing, vol. 30, no. 1-4, pp. 219-232, 2000.
    [84] Y. F. Yam and T. W. S. Chow, “Feedforward networks training speed enhancement by optimal initialization of the synaptic coefficients,” IEEE Trans. Neural Networks, vol. 12, no. 2, pp. 430-434, 2001.
    [85] W. Yu, “State-space recurrent fuzzy neural networks for nonlinear system identification,” Neural Processing Letters, vol. 22, no. 3, pp. 391-404, 2005.
    [86] J. P. Yeh, “Identifying chaotic systems using a fuzzy model coupled with a linear plant,” Chaos, Solitons and Fractals, vol. 32, no. 3, pp. 1178-1187, 2007.

    下載圖示 校內:2009-08-07公開
    校外:2009-08-07公開
    QR CODE