簡易檢索 / 詳目顯示

研究生: 張宏存
Chang, Hong-Tsun
論文名稱: iPhos: 使用鹼性磷酸酶輔助液相層析質譜技術研究磷酸化蛋白質體之網頁工具
iPhos: a web tool to streamline the alkaline phosphatase-assisted LC-MS phosphoproteome investigation
指導教授: 吳謂勝
Wu, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 54
中文關鍵詞: 蛋白質磷酸化針對性的液相層析質譜鹼性磷酸非標記定量
外文關鍵詞: protein phosphorylation, targeted LC-MS/MS, alkaline phosphatase, label-free quantification
相關次數: 點閱:154下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • iPhos 為一網站軟體工具組用以促進及有效率的進行蛋白質體學分析之研究,並且藉著鹼性磷酸酶與磷酸化蛋白質之間的作用,協助蛋白質體特性的分析。全面性的蛋白質體學分析對於細胞之間的訊息傳導研究極為重要,但是細胞中的磷酸化胜的數量十分稀少,因此使用質譜技術來分析蛋白質體仍是一項挑戰。為了克服這些障礙,與我們共同研究的廖寶琦老師實驗室過去提出一個全面性分析的策略,藉由使用鹼性磷酸酶的特性並搭配高解析度之質譜儀設備的流程來實現,此策略可更準確的從樣本中鑑定出磷酸化胜肽。儘管此流程在應用上都是可行的,但完整流程大部分都需要繁雜的步驟及耗費大量的人力,因此為了讓以上流程更有效率,iPhos 提供人性化操作介面及協助整個實驗流程的數據探勘進行,以得到更加全面性的研究結果。我們利用 iPhos 軟體工具組做了進一步的分析,從人類轉移肺癌細胞 (CL1-5) 的分析結果中證實了 iPhos 工具組的效用,並在 CL1-5 細胞之控制組與施以藥物 dasatinib 細胞之實驗組的比較研究中,我們更證實 iPhos 工具組的實用性,而且也提出基於使用 iPhos 促進液相層析質譜技術的磷酸化蛋白質體研究的實驗報告結果。除此以外,我們也比較了以單純的數據依賴型數據採集為基礎的 (DDA-based) 質譜分析與針對性型的質譜分析之差別,從這兩種蛋白質體策略的研究中發現,iPhos 促進的針對性型質譜分析比單純數據依賴型數據採集為基礎的質譜分析得到更全面且可靠的磷酸化胜肽定性與定量之結果。iPhos 軟體工具組及範例資料樣本皆可在下列網址取 http://cosbi3.ee.ncku.edu.tw/iPhos/.

    iPhos is a web based software toolkit to facilitate and streamline the work-flow of the alkaline phosphatase-assisted phosphoproteome characterization. Comprehensive characterization of the phosphoproteome in living cells is critical in signal transduction research. But the low abundance of phosphopeptides among the total proteome in cells remains a challenge in mass spectrometry-based proteomic analysis. To overcome the obstacles, an alternative analytic strategy to confidently identify phosphorylated peptides by using the alkaline phosphatase (AP) treatment in combination with high-resolution mass spectrometry was provided by Liao’s group. While the process is applicable, the key integration along the pipeline was mostly done by tedious manual work. In order to be effective and convenient, iPhos not only has a user friendly web interface but also assists the experiment work-flow in data analysis. We further demonstrated the utility of the iPhos toolkit on the data of human metastatic lung cancer cells (CL1-5). In the comparison study of the control group of CL1-5 cell lysates and the treatment group of dasatinib-treated CL1-5 cell lysates, we demonstrated the applicability of the iPhos toolkit and reported the experimental results based on the iPhos-facilitated phosphoproteome investigation. Additionally, we also compared the strategy with pure DDAbased LC-MS/MS phosphoproteome investigation. The results of iPhos-facilitated targeted LC-MS/MS analysis convey more thorough and confident phosphopeptide identification than the results of pure DDA-based analysis. The iPhos software toolkit and sample tutorial data are available online at http://cosbi3.ee.ncku.edu.tw/iPhos/.

    中文摘要I Abstract III Acknowledgement IV List of Tables VII List of Figures VIII List of Abbreviations IX Chapter 1 Introduction 1 1.1 Motivation and Literature Review ........1 1.1.1 Technique for detecting protein phosphorylation ....2 1.1.2 Systematic ways of finding pTyr-phosphorylated peptides ...4 1.2 Contribution of this study .........4 1.3 Thesis organization ..........6 Chapter 2 Methods and Material 7 2.1 iPhos toolkit implementation .........7 2.1.1 Raw data conversion .........7 2.1.2 Peak Extraction Assister .........9 2.1.3 Module-1: phosphopeptide signal extraction .....10 2.1.4 Module-2: inclusion list generation for targeted LC-MS/MS ..11 2.1.5 Module-3: integration of phosphopeptide identification and patternbased label-free quantitative analysis ......11 2.2 The demonstration dataset ..........15 2.2.1 Cell lysate preparation ........16 2.2.2 Immunoprecipitation and in-gel digestion ......16 2.2.3 Phosphopeptide enrichment by TiO2 pipette tip and AP treatment .17 2.2.4 NanoLC-MS analysis .........18 2.2.5 Targeted LC-MS/MS analysis and database search ...19 Chapter 3 Results and Discussion 22 3.1 iPhos user interface and user guides .......22 3.1.1 Raw data preprocessing .........23 3.1.2 iPhos Peak Extraction Assister ........23 3.1.3 iPhos Module-1 ..........24 3.1.4 iPhos Module-2 ..........29 3.1.5 iPhos Module-3 ..........31 3.2 CL1-5 cell lysate phosphoproteome investigation assisted by iPhos ...35 3.2.1 A demonstration example ........38 3.2.2 Comparison with DDA-based phosphoproteome investigation .39 3.2.3 Confidence evaluation ........41 Chapter 4 Conclusion 46 References 48

    [1] M. Bellew, M. Coram, M. Fitzgibbon, M. Igra, T. Randolph, P. Wang, D. May, J. Eng,
    R. Fang, C. Lin, et al., “A suite of algorithms for the comprehensive analysis of complex
    protein mixtures using high-resolution LC-MS,” Bioinformatics, vol. 22, no. 15,
    pp. 1902–1909, 2006.
    [2] M. Bern, G. Finney, M. R. Hoopmann, G. Merrihew, M. J. Toth, and M. J. MacCoss,
    “Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem
    mass spectrometry,” Analytical Chemistry, vol. 82, no. 3, pp. 833–841, 2009.
    [3] K. Blackburn and M. B. Goshe, “Challenges and strategies for targeted phosphorylation
    site identification and quantification using mass spectrometry analysis,” Briefings in
    Functional Genomics & Proteomics, vol. 8, no. 2, pp. 90–103, 2009.
    [4] K. Blackburn, F. Mbeunkui, S. K. Mitra, T. Mentzel, and M. B. Goshe, “Improving
    protein and proteome coverage through data-independent multiplexed peptide fragmentation,”
    Journal of Proteome Research, vol. 9, no. 7, pp. 3621–3637, 2010.
    [5] P. Blume-Jensen and T. Hunter, “Oncogenic kinase signalling,” Nature, vol. 411,
    no. 6835, pp. 355–365, 2001.
    [6] B. Bodenmiller, L. N. Mueller, P. G. Pedrioli, D. Pflieger, M. A. J¨unger, J. K. Eng, R. Aebersold,
    and W. A. Tao, “An integrated chemical, mass spectrometric and computational
    strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster
    Kc167 cells,” Molecular BioSystems, vol. 3, no. 4, pp. 275–286, 2007.
    [7] M. C. Chambers, B. Maclean, R. Burke, D. Amodei, D. L. Ruderman, S. Neumann,
    L. Gatto, B. Fischer, B. Pratt, J. Egertson, et al., “A cross-platform toolkit for mass spectrometry
    and proteomics,” Nature Biotechnology, vol. 30, no. 10, pp. 918–920, 2012.
    [8] M. O. Collins, L. Yu, I. Campuzano, S. G. Grant, and J. S. Choudhary, “Phosphoproteomic
    analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation
    in regions of intrinsic sequence disorder,” Molecular & Cellular Proteomics,
    vol. 7, no. 7, pp. 1331–1348, 2008.
    [9] M. O. Collins, L. Yu, and J. S. Choudhary, “Analysis of protein phosphorylation on a
    proteome-scale,” Proteomics, vol. 7, no. 16, pp. 2751–2768, 2007.
    [10] M. Courcelles, G. Bridon, S. Lemieux, and P. Thibault, “Occurrence and detection
    of phosphopeptide isomers in large-scale phosphoproteomics experiments,” Journal of
    Proteome Research, vol. 11, no. 7, pp. 3753–3765, 2012.
    [11] A. Emadali, P. P. Metrakos, F. Kalantari, T. Boutros, D. Boismenu, and E. Chevet,
    “Proteomic analysis of tyrosine phosphorylation during human liver transplantation,”
    Proteome Science, vol. 5, no. 1, p. 1, 2007.
    [12] M. Flirski and T. Sobow, “Biochemical markers and risk factors of Alzheimer’s disease,”
    Current Alzheimer Research, vol. 2, no. 1, pp. 47–64, 2005.
    [13] S. J. Geromanos, J. P. Vissers, J. C. Silva, C. A. Dorschel, G.-Z. Li, M. V. Gorenstein,
    R. H. Bateman, and J. I. Langridge, “The detection, correlation, and comparison of
    peptide precursor and product ions from data independent LC-MS with data dependant
    LC-MS/MS,” Proteomics, vol. 9, no. 6, pp. 1683–1695, 2009.
    [14] L. C. Gillet, P. Navarro, S. Tate, H. R¨ost, N. Selevsek, L. Reiter, R. Bonner, and R. Aebersold,
    “Targeted data extraction of the MS/MS spectra generated by data-independent
    acquisition: a new concept for consistent and accurate proteome analysis,” Molecular &
    Cellular Proteomics, vol. 11, no. 6, pp. O111–016717, 2012.
    [15] A. Gnoni, I. Marech, N. Silvestris, A. Vacca, and V. Lorusso, “Dasatinib: an antitumour
    agent via Src inhibition,” Current Drug Targets, vol. 12, no. 4, pp. 563–578,
    2011.
    [16] S. P. Gygi and R. Aebersold, “Mass spectrometry and proteomics,” Current Opinion in
    Chemical Biology, vol. 4, no. 5, pp. 489–494, 2000.
    [17] E. B. Haura, A. Muller, F. P. Breitwieser, J. Li, F. Grebien, J. Colinge, and K. L. Bennett,
    “Using iTRAQ combined with tandem affinity purification to enhance low-abundance
    proteins associated with somatically mutated EGFR core complexes in lung cancer,”
    Journal of Proteome Research, vol. 10, no. 1, pp. 182–190, 2010.
    [18] T. Hunter, “Signaling—2000 and beyond,” Cell, vol. 100, no. 1, pp. 113–127, 2000.
    [19] S. Y. Imanishi, V. Kochin, S. E. Ferraris, A. de Thonel, H.-M. Pallari, G. L. Corthals,
    and J. E. Eriksson, “Reference-facilitated Phosphoproteomics FAST AND RELIABLE
    PHOSPHOPEPTIDE VALIDATION BY LC-ESI-Q-TOF MS/MS,” Molecular & Cellular
    Proteomics, vol. 6, no. 8, pp. 1380–1391, 2007.
    [20] Y. Ishihama, F.-Y. Wei, K. Aoshima, T. Sato, J. Kuromitsu, and Y. Oda, “Enhancement
    of the efficiency of phosphoproteomic identification by removing phosphates after phosphopeptide
    enrichment,” Journal of Proteome Research, vol. 6, no. 3, pp. 1139–1144,
    2007.
    [21] H. Johnson and F. M. White, “Toward quantitative phosphotyrosine profiling in vivo,”
    Seminars in Cell & Developmental Biology, vol. 23, no. 8, pp. 854–862, 2012.
    [22] M. Katajamaa, J. Miettinen, and M. Oreˇsiˇc, “MZmine: toolbox for processing and visualization
    of mass spectrometry based molecular profile data,” Bioinformatics, vol. 22,
    no. 5, pp. 634–636, 2006.
    [23] H. K. Kweon and K. H°akansson, “Selective zirconium dioxide-based enrichment of
    phosphorylated peptides for mass spectrometric analysis,” Analytical Chemistry, vol. 78,
    no. 6, pp. 1743–1749, 2006.
    [24] X.-j. Li, C. Y. Eugene, C. J. Kemp, H. Zhang, and R. Aebersold, “A software suite for
    the generation and comparison of peptide arrays from sets of data collected by liquid
    chromatography-mass spectrometry,” Molecular & Cellular Proteomics, vol. 4, no. 9,
    pp. 1328–1340, 2005.
    [25] P. Liao, J. Leykam, P. Andrews, D. Gage, and J. Allison, “An approach to locate phosphorylation
    sites in a phosphoprotein: mass mapping by combining specific enzymatic
    degradation with matrix-assisted laser desorption/ionization mass spectrometry,” Analytical
    Biochemistry, vol. 219, no. 1, pp. 9–20, 1994.
    [26] Y. P. Lim, “Mining the tumor phosphoproteome for cancer markers,” Clinical Cancer
    Research, vol. 11, no. 9, pp. 3163–3169, 2005.
    [27] M. Mann, S.-E. Ong, M. Grønborg, H. Steen, O. N. Jensen, and A. Pandey, “Analysis of
    protein phosphorylation using mass spectrometry: deciphering the phosphoproteome,”
    Trends in Biotechnology, vol. 20, no. 6, pp. 261–268, 2002.
    [28] M. Marcantonio, M. Trost, M. Courcelles, M. Desjardins, and P. Thibault, “Combined
    enzymatic and data mining approaches for comprehensive phosphoproteome analyses
    application to cell signaling events of Interferon-
    -stimulated macrophages,” Molecular
    & Cellular Proteomics, vol. 7, no. 4, pp. 645–660, 2008.
    [29] M. E. Monroe, N. Toli´c, N. Jaitly, J. L. Shaw, J. N. Adkins, and R. D. Smith, “VIPER:
    an advanced software package to support high-throughput LC-MS peptide identification,”
    Bioinformatics, vol. 23, no. 15, pp. 2021–2023, 2007.
    [30] J. C. Montero, S. Seoane, A. Oca˜na, and A. Pandiella, “Inhibition of SRC family kinases
    and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors,”
    Clinical Cancer Research, vol. 17, no. 17, pp. 5546–5552, 2011.
    [31] L. N. Mueller, O. Rinner, A. Schmidt, S. Letarte, B. Bodenmiller, M.-Y. Brusniak,
    O. Vitek, R. Aebersold, and M. M¨uller, “SuperHirn–a novel tool for high resolution LCMS-
    based peptide/protein profiling,” Proteomics, vol. 7, no. 19, pp. 3470–3480, 2007.
    [32] J. V. Olsen, B. Blagoev, F. Gnad, B. Macek, C. Kumar, P. Mortensen, and M. Mann,
    “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks,”
    Cell, vol. 127, no. 3, pp. 635–648, 2006.
    [33] A. Panchaud, A. Scherl, S. A. Shaffer, P. D. von Haller, H. D. Kulasekara, S. I. Miller,
    and D. R. Goodlett, “Precursor acquisition independent from ion count: how to dive
    deeper into the proteomics ocean,” Analytical Chemistry, vol. 81, no. 15, pp. 6481–6488, 2009.
    [34] S. H. Payne, M. Yau, M. B. Smolka, S. Tanner, H. Zhou, and V. Bafna,
    “Phosphorylation-specific MS/MS scoring for rapid and accurate phosphoproteome
    analysis,” Journal of Proteome Research, vol. 7, no. 8, pp. 3373–3381, 2008.
    [35] L. R. Pearce, D. Komander, and D. R. Alessi, “The nuts and bolts of AGC protein
    kinases,” Nature Reviews Molecular Cell Biology, vol. 11, no. 1, pp. 9–22, 2010.
    [36] P. G. Pedrioli, J. K. Eng, R. Hubley, M. Vogelzang, E. W. Deutsch, B. Raught, B. Pratt,
    E. Nilsson, R. H. Angeletti, R. Apweiler, et al., “A common open representation of mass
    spectrometry data and its application to proteomics research,” Nature Biotechnology,
    vol. 22, no. 11, pp. 1459–1466, 2004.
    [37] M.W. Pinkse, P. M. Uitto, M. J. Hilhorst, B. Ooms, and A. J. Heck, “Selective isolation
    at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLCESI-
    MS/MS and titanium oxide precolumns,” Analytical Chemistry, vol. 76, no. 14,
    pp. 3935–3943, 2004.
    [38] J. Porath, “High-performance immobilized-metal-ion affinity chromatography of peptides
    and proteins,” Journal of Chromatography A, vol. 443, pp. 3–11, 1988.
    [39] M. C. Posewitz and P. Tempst, “Immobilized gallium (III) affinity chromatography of
    phosphopeptides,” Analytical Chemistry, vol. 71, no. 14, pp. 2883–2892, 1999.
    [40] D. Radulovic, S. Jelveh, S. Ryu, T. G. Hamilton, E. Foss, Y. Mao, and A. Emili, “Informatics
    platform for global proteomic profiling and biomarker discovery using liquid
    chromatography-tandem mass spectrometry,” Molecular & Cellular Proteomics, vol. 3,
    no. 10, pp. 984–997, 2004.
    [41] L. D. Rogers and L. J. Foster, “Phosphoproteomics—finally fulfilling the promise?,”
    Molecular Biosystems, vol. 5, no. 10, pp. 1122–1129, 2009.
    [42] B. E. Ruttenberg, T. Pisitkun, M. A. Knepper, and J. D. Hoffert, “PhosphoScore: an
    open-source phosphorylation site assignment tool for MS n data,” Journal of Proteome
    Research, vol. 7, no. 7, pp. 3054–3059, 2008.
    [43] M. M. Savitski, S. Lemeer, M. Boesche, M. Lang, T. Mathieson, M. Bantscheff, and
    B. Kuster, “Confident phosphorylation site localization using the Mascot Delta Score,”
    Molecular & Cellular Proteomics, vol. 10, no. 2, pp. M110–003830, 2011.
    [44] A. Schmidt, N. Gehlenborg, B. Bodenmiller, L. N. Mueller, D. Campbell, M. Mueller,
    R. Aebersold, and B. Domon, “An integrated, directed mass spectrometric approach
    for in-depth characterization of complex peptide mixtures,” Molecular & Cellular Proteomics,
    vol. 7, no. 11, pp. 2138–2150, 2008.
    [45] H. Steen, B. K¨uster, M. Fernandez, A. Pandey, and M. Mann, “Detection of tyrosine
    phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry
    in positive ion mode,” Analytical Chemistry, vol. 73, no. 7, pp. 1440–1448, 2001.
    [46] M. Sturm, A. Bertsch, C. Gr¨opl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer,
    O. Schulz-Trieglaff, A. Zerck, K. Reinert, et al., “OpenMS–an open-source software
    framework for mass spectrometry,” BMC Bioinformatics, vol. 9, no. 1, p. 163, 2008.
    [47] N. Sugiyama, T. Masuda, K. Shinoda, A. Nakamura, M. Tomita, and Y. Ishihama,
    “Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography
    for nano-LC-MS/MS in proteomics applications,” Molecular & Cellular
    Proteomics, vol. 6, no. 6, pp. 1103–1109, 2007.
    [48] J. E. Syka, J. J. Coon, M. J. Schroeder, J. Shabanowitz, and D. F. Hunt, “Peptide and
    protein sequence analysis by electron transfer dissociation mass spectrometry,” Proceedings
    of the National Academy of Sciences of the United States of America, vol. 101,
    no. 26, pp. 9528–9533, 2004.
    [49] T. Taus, T. Kocher, P. Pichler, C. Paschke, A. Schmidt, C. Henrich, and K. Mechtler,
    “Universal and confident phosphorylation site localization using phosphoRS,” Journal
    of Proteome Research, vol. 10, no. 12, pp. 5354–5362, 2011.
    [50] C.-C. Tsou, C.-F. Tsai, Y.-H. Tsui, P.-R. Sudhir, Y.-T. Wang, Y.-J. Chen, J.-Y. Chen,
    T.-Y. Sung, and W.-L. Hsu, “IDEAL-Q, an automated tool for label-free quantitation
    analysis using an efficient peptide alignment approach and spectral data validation,”
    Molecular & Cellular Proteomics, vol. 9, no. 1, pp. 131–144, 2010.
    [51] Y.-T. Wang, C.-F. Tsai, T.-C. Hong, C.-C. Tsou, P.-Y. Lin, S.-H. Pan, T.-M. Hong, P.-
    C. Yang, T.-Y. Sung, W.-L. Hsu, et al., “An informatics-assisted label-free quantitation
    strategy that depicts phosphoproteomic profiles in lung cancer cell invasion,” Journal of
    Proteome Research, vol. 9, no. 11, pp. 5582–5597, 2010.
    [52] J. W. Wong, A. B. Schwahn, and K. M. Downard, “ETISEQ–an algorithm for automated
    elution time ion sequencing of concurrently fragmented peptides for mass
    spectrometry-based proteomics,” BMC Bioinformatics, vol. 10, no. 1, p. 244, 2009.
    [53] H.-Y. Wu, V. S. Tseng, L.-C. Chen, H.-Y. Chang, I.-C. Chuang, Y.-G. Tsay, and P.-
    C. Liao, “Identification of tyrosine-phosphorylated proteins associated with lung cancer
    metastasis using label-free quantitative analyses,” Journal of Proteome Research, vol. 9,
    no. 8, pp. 4102–4112, 2010.
    [54] H.-Y.Wu, V. S.-M. Tseng, L.-C. Chen, Y.-C. Chang, P. Ping, C.-C. Liao, Y.-G. Tsay, J.-
    S. Yu, and P.-C. Liao, “Combining alkaline phosphatase treatment and hybrid linear ion
    trap/Orbitrap high mass accuracy liquid chromatography-mass spectrometry data for the
    efficient and confident identification of protein phosphorylation,” Analytical Chemistry,
    vol. 81, no. 18, pp. 7778–7787, 2009.
    [55] H.-Y. Wu, V. S.-M. Tseng, and P.-C. Liao, “Mining phosphopeptide signals in liquid
    chromatography-mass spectrometry data for protein phosphorylation analysis,” Journal
    of Proteome Research, vol. 6, no. 5, pp. 1812–1821, 2007.
    [56] T.-H. Yang, H.-T. Chang, E. S. Hsiao, J.-L. Sun, C.-C.Wang, H.-Y.Wu, P.-C. Liao, and
    W.-S. Wu, “iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive
    LC-MS phosphoproteome investigation,” BMC bioinformatics, vol. 15, no. Suppl
    16, p. S10, 2014.
    [57] J. Zhang and W. Haskins, “ICPD-a new peak detection algorithm for LC/MS,” BMC
    Genomics, vol. 11, no. Suppl 3, p. S8, 2010.

    無法下載圖示 校內:2020-06-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE