簡易檢索 / 詳目顯示

研究生: 黃宏偉
Huang, Hung-Wei
論文名稱: 反應燒結法和機械化學合成奈米粉體在微波介電陶瓷(Zr0.8, Sn0.2)TiO4之研究
Effects of Reaction Sintering and Nanopowder Derived from Mechanochemical Synthesis on Microwave Dielectric Ceramic (Zr0.8, Sn0.2)TiO4
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 反應燒結法機械化學合成法鈦酸鋯錫
外文關鍵詞: Reaction Sintering, Mechanochemical Synthesis, (Zr0.8, Sn0.2)TiO4
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中利用反應燒結法(reaction-sintering process)製備添加BaO之(Zr0.8, Sn0.2)TiO4 (ZST)介電陶瓷與機械化學合成法(mechanochemical synthesis)製備奈米粉體及ZST陶瓷體之燒結,並針對材料結構及微波介電特性進行分析。
    反應燒結法無需煆燒步驟,ZST陶瓷可在1550℃燒結6小時後得到,其密度為4.623 g/cm3 (達理論密度之89.08%);添加1wt%的BaO在1390℃燒結4小時的密度為4.890 g/cm3 (達理論密度之94.22%),微波介電特性為 =36.87、 =47200GHz(7.4~7.8GHz)、 = -3.04 ppm/℃。
    機械化學合成法以高能量球磨原始粉末5小時可得微弱強度之ZST相,粉末粒徑可達奈米級,添加1wt%的ZnO在1390℃燒結4小時後,密度為4.947 g/cm3 (達理論密度之95.32%),微波介電特性為 =36.83、 =46800GHz(7.4~7.8GHz)、 = -1.74 ppm/℃。

    The aim of this work was an investigation of structure and dielectric properties of BaO-doped (Zr0.8, Sn0.2)TiO4 (ZST) ceramics by reaction-sintering process and nanopowder derived by using mechanochemical synthesis with sintered ceramics.
    In the reaction-sintering process, the mixture of raw materials was pressed and sintered directly without any calcinations involved. ZST with density of 4.623 g/cm3 (89.08% of the theoretic value) was obtained at 1550°C for 6 h sintering.A density 4.890 g/cm3 (94.22% of the theoretic value) and =36.87 and =47200GHz(7.4~7.8GHz) and = -3.04 ppm/℃ were obtained for 1wt% BaO-doped ZST ceramic sintered at 1390°C/4 h.
    In the mechanochemical synthesis, a weak ZST phase was obtained in nanopowder by high energy ball mill for 5h. A density 4.947 g/cm3 (95.32% of the theoretic value) and =36.83 and =46800GHz(7.4~7.8GHz) and = -1.74 ppm/℃ were obtained for 1wt% ZnO-doped ZST ceramic sintered at 1390°C/4 h.

    第一章 緒論 1 1-1 研究動機 1 1-2文獻回顧 2 1-3研究目的 2 第二章 原理 3 2-1 介電材料的微波特性與原理 3 2-1-1 微波特性 3 2-1-2 介電原理 6 2-2 微波介電陶瓷介紹 11 2-3 陶瓷粉體製程 12 2-4 燒結原理 14 2-4-1 燒結理論 14 2-4-2 燒結驅動力 15 2-4-2 液相燒結 17 2-4-3 燒結技術介紹 18 2-5 鈦酸鋯錫ZST 20 2-5-1 鈦酸鋯 20 2-5-2 鈦酸鋯錫 20 2-6 介電共振器原理 22 第三章 實驗程序與量測方法 36 3-1 介電材料製備 36 3-1-1 反應燒結法製備BaO添加之(Zr0.8, Sn0.2)TiO4陶瓷體 36 3-1-2 機械化學合成法製備(Zr0.8, Sn0.2)TiO4陶瓷粉體 37 3-1-3 添加1wt% ZnO之(Zr0.8, Sn0.2)TiO4與添加1mol% BaCO3之(Zr0.8, Sn0.2)TiO4製備 39 3-2-1 X-ray繞射分析 (XRD) 41 3-2-2 收縮率量測 41 3-2-3 密度量測 42 3-2-4 掃瞄式電子顯微鏡分析 (SEM) 42 3-3 微波特性量測 43 第四章 實驗結果與討論 52 4-1反應燒結法製備BaO添加之ZST 52 4-1-1 XRD分析與反應機制之探討 52 4-1-2 收縮率與密度分析 53 4-1-3 SEM微結構分析 55 4-1-4 微波特性分析 57 4-2 機械化學合成法製備(Zr0.8, Sn0.2)TiO4陶瓷粉體及其常壓燒結陶瓷 58 4-2-1 機械化學合成ZST之反應分析 58 4-2-2 陶瓷體XRD分析 58 4-2-3 收縮率與密度分析 59 4-2-4 SEM微結構分析 59 4-2-5 微波特性分析 60 4-3 添加1wt% ZnO之(Zr0.8, Sn0.2)TiO4與添加1mol% BaCO3之(Zr0.8, Sn0.2)TiO4 60 第五章 結論 89 參考文獻 90

    [1] M. T. Sebastian, Dielectric Materials for Wireless Communication: Elsevier Science, 2008.
    [2] Y. Higuchi and H. Tamura, "Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies," J. Eur. Ceram. Soc., vol. 23, pp. 2683-2688, 2003.
    [3] K. Wakino, K. Minai, and H. Tamura, "Microwave Characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators," J. Am. Ceram. Soc., vol. 67, pp. 278-281, 1984.
    [4] K. H. Yoon and E. S. Kim, "Dielectric characteristics of zirconium tin titanate ceramics at microwave frequencies," Mater. Res. Bull., vol. 30, pp. 813-820, 1995.
    [5] K. H. Yoon, Y. S. Kim, and E. S. Kim, "Microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics with pentavalent additives," J. Mater. Res., vol. 10, pp. 2085-2090, 1995.
    [6] C. L. Huang, C. S. Hsu, and R. J. Lin, "Improved high-Q microwave dielectric resonator using ZnO and WO3-doped Zr0.8Sn0.2TiO4 ceramics," Mater. Res. Bull., vol. 36, pp. 1985-1993, 2001.
    [7] C. L. Huang, M. H. Weng, C. C. Wu, and C. C. Wei, "Microwave Dielectric Properties and Microstructures of V2O5-Modified Zr0.8Sn0.2TiO4 Ceramics," Jpn. J. Appl. Phys., Part 1, vol. 40, pp. 698-702, 2001.
    [8] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IRE Trans. Microwave Theory Tech., vol. 8, pp. 402-410, 1960.
    [9] 吳朗, 電子陶瓷介電篇: 全新資訊圖書, 1994.
    [10] 吳朗, 電工材料: 滄海書局, 1998.
    [11] A. J. Moulson and J. M. Herbert, Electroceramics: John Wiley & Sons Inc., 2003.
    [12] G. Burns, Solid State Physics, 1985.
    [13] K. Wakino, M. Murata, and H. Tamura, "Far Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material," J. Am. Ceram. Soc., vol. 69, pp. 34-37, 1986.
    [14] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE Trans. Microwave Theory Tech., vol. 18, pp. 476-485, 1970.
    [15] P. K. Davies, J. Tong, and T. Negas, "Effect of Ordering-Induced Domain Boundaries on Low-Loss Ba(Zn1/3Ta2/3)O3-BaZrO3 Perovskite Microwave Dielectrics," J. Am. Ceram. Soc., vol. 80, pp. 1727-1740, 1997.
    [16] M. Furuya, "Microwave dielectric properties and characteristics of polar lattice vibrations for Ba(Mg1/3Ta2/3)O3 -A(Mg1/3Ta2/3)O3 (A=Ba, Sr, and Ca) ceramics," J. Appl. Phys., vol. 85, pp. 1084-1088, 1999.
    [17] X. Hu, X. M. Chen, and Y. J. Wu, "Nd-substituted Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics," Mater. Lett., vol. 54, pp. 279-283, 2002.
    [18] S. Kawashima, "Influence of ZnO evaporation on microwave dielectric loss in sinterability of Ba(Zn1/3Ta2/3)O3 ceramics," Am. Ceram. Soc. Bull., vol. 72, pp. 120-126, 1993.
    [19] S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, "Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequencies," J. Am. Ceram. Soc., vol. 66, pp. 421-423, 1983.
    [20] H. Matsumoto, H. Tamura, and K. Wakino, "Ba(Mg, Ta)O3-BaSnO3 High-Q Dielectric Resonator," Jpn. J. Appl. Phys., vol. 30, pp. 2347-2349, 1991.
    [21] M. Onoda, J. Kuwata, K. Kaneta, K. Toyama, and S. Nomura, "Ba(Zn1/3Nb2/3)O3 -Sr(Zn1/3Nb2/3)O3 Solid Solution Ceramics with Temperature-Stable High Dielectric Constant and Low Microwave Loss," Jpn. J. Appl. Phys., vol. 21, pp. 1707-1710, 1982.
    [22] R. Ratheesh, M. T. Sebastian, M. E. Tobar, J. Hartnett, and D. G. Blair, "Whispering Gallery mode microwave characterization of Ba(Mg1/3,Ta2/3)O3 dielectric resonators," J. Phys. D: Appl. Phys., vol. 32, pp. 2821-2826, 1999.
    [23] H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, "Improved High-Q Dielectric Resonator with Complex Perovskite Structure," J. Am. Ceram. Soc., vol. 67, pp. c59-c61, 1984.
    [24] H. M. O'Bryan and J. Thomson, "Phase Equilibria in the TiO2-Rich Region of the System BaO-TiO2," J. Am. Ceram. Soc., vol. 57, pp. 522-526, 1974.
    [25] P. C. Osbond, R. W. Whatmore, and F. W. Ainger, "The Properties and Microwave Applications of Zirconium Titanate Stannate Ceramics," in Proc. Br. Ceram. Soc. vol. 36, 1985, pp. 167-178.
    [26] H. Tamura, "Microwave Loss Quality of (Zr0.8Sn0.2)TiO4," Am. Ceram. Soc. Bull., vol. 73, pp. 92-95, 1994.
    [27] M. T. Sebastian, "New low loss microwave dielectric ceramics in the BaO-TiO2-Nb2O5/Ta2O5 system," J. Mater. Sci. - Mater. Electron., vol. 10, pp. 475-478, 1999.
    [28] R. Ubic, I. M. Reaney, and W. E. Lee, "Perovskite NdTiO3 in Sr- and Ca-doped BaO-Nd2O3-TiO2 microwave dieletric ceramics," J. Mater. Res., vol. 14, pp. 1576-1580, 1999.
    [29] A. Webhofer and A. Feltz, "Microwave Dielectric Properties of Ceramics of the System Ba6-x(SmyNd1-y)8+2x/3Ti18O54 " J. Mater. Sci. Lett., vol. 18, pp. 719-721, 1999.
    [30] L. B. Kong, J. Ma, H. Huang, R. F. Zhang, and W. X. Que, "Barium titanate derived from mechanochemically activated powders," J. Alloys Compd., vol. 337, pp. 226-230, 2002.
    [31] "technologies and their products," http://www.chemat.com/, Ed.: CHEMAT Technology, Inc.
    [32] B. Jirhennsons and M. E. Straumanis, Colloid Chemistry: McMillan Co. New York, 1962.
    [33] W. J. Dawson, "Hydrothermal Synthesis of Advanced Ceramic Powders," Am. Ceram. Soc. Bull., vol. 67, pp. 1673-1678, 1988.
    [34] R. M. German, Sintering Theory and Practice. New York: John Wiley & Sons, 1996.
    [35] R. M. German, Liquid Phase Sintering. New York: Plenum Press, 1985.
    [36] J. H. Chen, Y. C. Liou, and K. H. Tseng, "Stoichiometric Perovskite Lead Magnesium Niobate Ceramics Produced by Reaction-Sintering Process," Jpn. J. Appl. Phys., Part 1, vol. 42, pp. 175-181, 2003.
    [37] Y. C. Liou, "Stoichiometric perovskite PMN-PT ceramics produced by reaction-sintering process," Mater. Sci. Eng., B, vol. 103, pp. 281-284, 2003.
    [38] Y.-C. Liou, "Effect of heating rate on properties of Pb(Mg1/3Nb2/3)O3 ceramics produced by the reaction-sintering process," Mater. Lett., vol. 58, pp. 944-947, 2004.
    [39] W. H. Sutton, M. H. Brooks, and I. I. Chabinsky, Microwave processing of materials, 1988.
    [40] W. H. Sutton, "Microwave processing of ceramic materials," Am. Ceram. Soc. Bull., vol. 68, pp. 376-386, 1989.
    [41] M. Tokita, "Mechanism of spark plasma sintering and its application to ceramics," Nyu Seramikkusu, vol. 10, pp. 43-53, 1997.
    [42] Z. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, "The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method," J. Mater. Sci., vol. 41, pp. 763-777, 2006.
    [43] R. E. Newnham, "Crystal Structure of ZrTiO4," J. Am. Ceram. Soc., vol. 50, pp. 216-216, 1967.
    [44] U. Troitzsch and D. J. Ellis, "The ZrO2-TiO2 phase diagram," J. Mater. Sci., vol. 40, pp. 4571-4577, 2005.
    [45] H. Ikawa, T. Yamada, K. Kojima, and S. Matsumoto, "X-ray Photoelectron Spectroscopy Study of High- and Low-Temperature Forms of Zirconium Titanate," J. Am. Ceram. Soc., vol. 74, pp. 1459-1462, 1991.
    [46] Y. Park and Y. Kim, "Order-disorder transition of tin-modified zirconium titanate," Mater. Res. Bull., vol. 31, pp. 7-15, 1996.
    [47] R. Christoffersen, P. K. Davies, X. Wei, and T. Negas, "Effect of Sn Substitution on Cation Ordering in (Zr1-x Sn x)TiO4 Microwave Dielectric Ceramics," J. Am. Ceram. Soc., vol. 77, pp. 1441-1450, 1994.
    [48] I. M. Reaney and D. Iddles, "Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks," J. Am. Ceram. Soc., vol. 89, pp. 2063-2072, 2006.
    [49] I. M. Reaney, P. Wise, R. Ubic, J. Breeze, N. M. Alford, D. Iddles, C. D, and T. Price, "On the Temperature Coefficient of Resonant Frequency in Microwave Dielectrics," Philos. Mag., vol. 81, pp. 501-510, 2001.
    [50] G. Wolfram and H. E. Gobel, "Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z=4)," Mater. Res. Bull., vol. 16, pp. 1455-1463, 1981.
    [51] F. H. Dulin and D. E. Rase, "Phase Equilibria in the System ZnO-TiO2," J. Am. Ceram. Soc., vol. 43, pp. 125-131, 1960.
    [52] W. S. Kim, T. H. Kim, E. S. Kim, and K. H. Yoon, "Microwave Dielectric Properties and Far Infrared Reflectivity Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives," Jpn. J. Appl. Phys., Part 1, vol. 37, pp. 5367-5371, 1998.
    [53] C. L. Huang, M. H. Weng, and H. L. Chen, "Effects of additives on microstructures and microwave dielectric properties of (Zr, Sn)TiO4 ceramics," Mater. Chem. Phys., vol. 71, pp. 17-22, 2001.
    [54] H. Tamura, "Microwave dielectric losses caused by lattice defects," J. Eur. Ceram. Soc., vol. 26, pp. 1775-1780, 2006.
    [55] M. Nobuhiko, T. Tsutomu, H. Yukio, and T. Hiroshi, "Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material," J. Am. Ceram. Soc., vol. 78, pp. 793-796, 1995.
    [56] D. K. Cheng, Field and Wave Electromagnetic, 1989.
    [57] D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE Trans. Microwave Theory Tech., vol. 32, pp. 1609-1616, 1984.
    [58] D. Kajfez, "Basic principle give understanding of dielectric waveguides and resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [59] D. Kajfez and P. Guillon, Dielectric resonators: Mass, 1986.
    [60] D. M. Iddles, A. J. Bell, and A. J. Moulson, "Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics " J. Mater. Sci., vol. 27, pp. 6303-6310, 1992.
    [61] D. J. Kim, J. W. Hahn, G. P. Han, S. S. Lee, and T. G. Choy, "Effects of Alkaline-Earth-Metal Addition on the Sinterability and Microwave Characteristics of (Zr,Sn)TiO4 Dielectrics," J. Am. Ceram. Soc., vol. 83, pp. 1010-1012, 2000.
    [62] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 586-592, 1985.
    [63] Y. Kobayashi and S. Tanaka, "Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates," IEEE Trans. Microwave Theory Tech., vol. 28, pp. 1077-1085, 1980.
    [64] P. Wheless and D. Kajfez, "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," in IEEE MTT-S Symposium Dig., 1985, pp. 473-476.
    [65] V. L. Arantes and D. P. F. Souza, "High Energy Ball-milling of tin titanate zirconate for use in microwave applications," Adv. Sci. Technol., vol. 45, pp. 480-485, 2006.

    下載圖示 校內:2012-07-30公開
    校外:2012-07-30公開
    QR CODE