簡易檢索 / 詳目顯示

研究生: 曾照峰
Tseng, Chao-Feng
論文名稱: 影像壓縮之演算法與架構
Algorithms and Architectures for Image Compression
指導教授: 賴源泰
Lai, Yen-Tai
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 78
中文關鍵詞: 影像壓縮影像縮放影像處理快速演算法硬體架構設計HEVCJPEG XRH.264AVC
外文關鍵詞: image compression, image scaling, image processing, fast algorithms, HEVC, JPEG XR, H.264, AVC
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了數種影像壓縮之演算法及架構。針對HEVC,提出了快速編碼單元決定法,能縮小編碼單元深度的搜尋範圍,達到快速決定深度的目的。另外還提出了快速模式選擇法,當最可能模式為特定方向的組合時,本方法可以快速挑出要進行「碼率-失真度最佳化」程序的模式。針對JPEG XR編碼程序中較複雜的「影像交疊轉換」和「影像核心轉換」,本文提出了新的運算法,可以消除計算過程中資料相依性,使所有算式能同時執行。此外,本文也提出了採用新演算法的軟硬體共同設計編碼器架構。
    對H.264/AVC的畫面內預測,本文提出了快速模式選擇法及其硬體架構設計。該方法採用了一種低複雜度的演算法以快速偵測區塊方向。對畫面間預測,本文提出了適用於三步搜尋法的可變區塊大小移動預估之硬體架構。為了提高預算速度,採用了平行化架構,並使處理單元能藉由小區塊的運算結果來計算大區塊的「絕對差值總和」。對影像縮放,本文提出了自適性影像內插法。本方法會檢查像素是否在物件邊緣並依據結果選擇對應的內插法,達到維持影像畫質和邊緣銳利度的目的。

    In this dissertation, we propose several fast algorithms and architectures for image compression. For HEVC, we propose a fast coding unit (CU) decision method. The method can reduce search ranges of CU depth to determine the depth of current CU quickly. Besides, we propose a fast mode selection method. It can quickly determine the modes for rate-distortion optimization when the combination of most probable modes reveals the pattern direction. For JPEG XR, we propose new algorithms for photo overlap transform (POT) and photo core transform (PCT), the complicated parts of JPEG XR. The new algorithms eliminate data dependency, so that operations in POT and PCT can be executed in parallel. In addition, we propose a hardware–software co-design encoder architecture which adopts the new algorithms.
    For intra-prediction in H.264/AVC, we propose a fast mode selection approach which uses a fast direction detection with low computational complexity. Also, we propose a hardware architecture for this algorithm. For inter-prediction, we design a VLSI architecture for variable block size motion estimation with three step search algorithm. To improve the throughput, parallel architecture is adopted and the processing elements can compute the sums of absolute differences of larger blocks by using the results derived for 4x4 blocks. For image scaling, we propose an adaptive image interpolation algorithm. It checks whether there is an edge or not in the region around a pixel and selects an interpolation method. Therefore the method keeps the edges sharp and provides good image quality.

    List of Tables IX List of Figures XI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization 3 Chapter 2 Fast Coding Unit Decision and Mode Selection for Intra-Frame Coding in HEVC 4 2.1 HEVC Overviews 4 2.1.1 Previous Works 4 2.1.2 Block Structure 6 2.1.3 Intra-Frame Prediction and Mode Selection 7 2.1.4 CU Size Decision 9 2.2 Fast Coding Unit Decision and Mode Selection 10 2.2.1 Early Skipping of Fast Coding Unit Decision Method 10 2.2.2 Early Termination of Fast Coding Unit Decision Method 13 2.2.3 Fast Mode Selection Method 17 2.3 Performance Verification and Comparisons 18 2.4 Summary 24 Chapter 3 A Hardware-Software Co-Design Architecture for JPEG XR Encoder 25 3.1 JPEG XR Overviews 25 3.1.1 Previous Works 25 3.1.2 Encoding Procedures 26 3.2 Proposed Algorithms and Architecture 30 3.2.1 Modified POT and PCT Algorithms 30 3.2.2 Basic Filters with Multiple Functions 34 3.2.3 Memory Saving Scheme 36 3.2.4 Hardware-Software Co-Design Architecture 38 3.3 Experimental Results and Comparisons 39 3.4 Summary 42 Chapter 4 Algorithms and Architectures for H.264 43 4.1 Fast Algorithm and VLSI Design for H.264 Intra-Prediction 43 4.1.1 Previous Works of Intra-Prediction 43 4.1.2 Rate-Distortion Optimization and Intra-Prediction 44 4.1.3 New Method and Architecture for Intra-Prediction 45 4.1.4 Experimental Results 48 4.2 A VLSI Architecture for TSS with VBSME 50 4.2.1 Previous Works of Inter-Prediction 50 4.2.2 New VLSI Architecture for Three-Step Search 51 4.2.3 Experimental Results 57 4.3 Summary 58 Chapter 5 Adaptive Image Scaling Based on Local Edge Directions 59 5.1 Previous Works 59 5.2 Adaptive Image Scaling Based on Local Edge Directions 60 5.2.1 Edge Detection 60 5.2.2 Edge-Directed Interpolation 63 5.3 Simulations and Comparisons 65 5.4 Summary 67 Chapter 6 Conclusions and Future Works 69 Reference 72 Publication List 77 Biography 78

    [1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard and A. Luthra, “Overview of the H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003.
    [2] I. E. G. Richardson, “H.264 and MPEG-4 Video Compression,” John Wiley & Sons, 2003.
    [3] G.J. Sullivan, J. Ohm, W.-J. Han and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.
    [4] D. Grois, D. Marpe, A.Mulayoff, B. Itzhaky and O. Hadar, “Performance Comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC Encoders,” Picture Coding Symposium (PCS), pp. 394-397, Dec. 2013.
    [5] F. Dufaux, G.J. Sullivan, T. Ebrahimi, “The JPEG XR Image Coding Standard,” IEEE Signal Processing Magazine, Vol. 26, no. 6, pp. 195-199, 204-204, Nov. 2009.
    [6] I.-K. Kim, J. Min, T. Lee, Woo-Jin Han and J.-H. Park, “Block Partitioning Structure in the HEVC Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22 no.12, pp. 1697-1706, Dec. 2012.
    [7] J. Lainema, F. Bossen, W.-J. Han, J. Min and K. Ugur, “Intra Coding of the HEVC Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp.1792-1801, Dec. 2012.
    [8] W. Jiang, H. Ma and Y. Chen, “Gradient Based Fast Mode Decision Algorithm for Intra Prediction in HEVC,” 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 1836-1840, Apr. 2012.
    [9] G. Chen, Z. Liu, T. Ikenaga and D. Wang, “Fast HEVC Intra Mode Decision Using Matching Edge Detector and Kernel Density Estimation alike Histogram Generation,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 53-56, May 2013.
    [10] S. Yan, L. Hong, W He and Q. Wang, “Group-Based Fast Mode Decision Algorithm for Intra Prediction in HEVC,” Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 225-229, Nov. 2012.
    [11] T.L. da Silva, L.A. da Silva Cruz and L.V. Agostini, “Fast HEVC Intra Mode Decision Based on Dominant Edge Evaluation and Tree Structure Dependencies,” 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 568-571, Dec. 2012.
    [12] T.L. da Silva, L.V. Agostini and L.A. da Silva Cruz, “Fast HEVC Intra Prediction Mode Decision Based on Edge Direction Information,” Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1214-1218, Aug. 2012.
    [13] Y. Quanhe, R. Yaocheng and H. Yun, “Fast Intra Mode Decision Strategy for HEVC,” IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), pp. 500-504, July 2013.
    [14] Y. Zhang, Z. Li and B. Li, “Gradient-Based Fast Decision for Intra Prediction in HEVC,” IEEE Visual Communications and Image Processing (VCIP), pp. 1-6, Nov. 2012.
    [15] M. Zhang, C. Zhao and J. Xu, “An Adaptive Fast Intra Mode Decision in HEVC,” 19th IEEE International Conference on Image Processing (ICIP), pp. 221-224, Sept. 2012.
    [16] A.S. Motra, A. Gupta, M. Shukla, P. Bansal and V. Bansal, “Fast Intra Mode Decision for HEVC Video Encoder,” 20th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1-5, Sept. 2012.
    [17] H. Zhang and Z. Ma, “Fast Intra Prediction for High Efficiency Video Coding,” Advances in Multimedia Information Processing – PCM 2012, pp. 568-577, Dec. 2012.
    [18] M. Alwani and S. Johar, “A Method for Fast Rough Mode Decision in HEVC,” Data Compression Conference (DCC), pp. 476-476, Mar. 2013.
    [19] B. Min and R.C.C. Cheung, “A Fast CU Size Decision Algorithm for the HEVC Intra Encoder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 5, pp. 892-896, May 2015.
    [20] J. Qiu, F. Liang and Y. Luo, “A Fast Coding Unit Selection Algorithm for HEVC,” IEEE International Conference on Multimedia and Expo Workshops(ICMEW), pp. 1-5, July 2013.
    [21] H. Huang, Y. Zhao, C. Lin and H. Bai, “Fast Bottom-Up Pruning for HEVC Intraframe Coding,” Visual Communications and Image Processing (VCIP), pp. 1-5, Nov. 2013.
    [22] X. Shen, L. Yu and J. Chen “Fast Coding Unit Size Selection for HEVC based on Bayesian Decision Rule,” Picture Coding Symposium (PCS), pp. 453-456, May 2012.
    [23] S. Cho and M. Kim, “Fast CU Splitting and Pruning for Suboptimal CU Partitioning in HEVC Intra Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 9, pp. 1555-1564, Sept. 2013.
    [24] L. Shen, Z. Liu, X. Zhang, Wenqiang Zhao and Zhaoyang Zhang, “An Effective CU Size Decision Method for HEVC Encoders,” IEEE Transactions on Multimedia, vol. 15, no. 2, pp. 465-470, Feb. 2013.
    [25] L. Shen, Z. Zhang and Z. Liu, “Effective CU Size Decision for HEVC Intracoding,” IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4232-4241, Oct. 2014.
    [26] L. Shen, Z. Zhang and Z. Liu, “Adaptive Inter-Mode Decision for HEVC Jointly Utilizing Inter-Level and Spatiotemporal Correlations,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 10, pp. 1709-1722, Oct. 2014.
    [27] J. Kim, J. Yang, H. Lee and B. Jeon, “Fast Intra Mode Decision of HEVC Based on Hierarchical Structure,” 8th International Conference on Information, Communications and Signal Processing (ICICS), pp. 1-4, Dec. 2011.
    [28] L. Shen, Z. Zhang and P. An, “Fast CU Size Decision and Mode Decision Algorithm for HEVC Intra Coding,” IEEE Transactions on Consumer Electronics, vol. 59, no. 1, pp. 207-213, Feb. 2013.
    [29] H. Sun, D. Zhou and S. Goto, “A Low-Complexity HEVC Intra Prediction Algorithm Based on Level and Mode Filtering,” IEEE International Conference on Multimedia and Expo (ICME), pp. 1085-1090, July 2012.
    [30] H. Zhang and Z. Ma, “Fast Intra Mode Decision for High Efficiency Video Coding (HEVC),” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 4, pp. 660-668, Apr. 2014.
    [31] H. Zhang and Z. Ma, “Early Termination Schemes for Fast Intra Mode Decision in High Efficiency Video Coding,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 45-48, May 2013.
    [32] M. Yang and C. Grecos, “Fast Intra Encoding Decisions for High Efficiency Video Coding Standard’, Journal of Real-Time Image Processing, 2014.
    [33] L. Shen, P. An, Z. Zhang, Q. Hu and Z. Chen, “A 3D-HEVC Fast Mode Decision Algorithm for Real-Time Applications’, ACM Transactions on Multimedia Computing, Communications, and Applications, 2015, vol. 11, no. 3, article 34.
    [34] J. Kim and B. Jeon, “Encoding Complexity Reduction by Removal of N × N Partition Type”, JCTVC-D087, July 2011.
    [35] Y. Piao, J. Min and J. Chen, “Encoder Improvement of Unified Intra Prediction,” JCTVC-C207, Oct. 2010.
    [36] S. Kanumuri, T. K. Tan and F. Bossen, “Enhancements to Intra Coding,” JCTVC-D235, Jan. 2011.
    [37] T. Lee, J. Chen and W.-J. Han, “TE 12.1: Transform Unit Quadtree/2-Level Test,” JCTVC-C200, Oct. 2010.
    [38] HM Reference Software. Available: http://hevc.kw.bbc.co.uk/trac/browser/tags/.
    [39] F. Bossen, “Common Test Conditions,” JCTVC-H1100, Mar. 2012.
    [40] G. Bjøntegaard, “Calculation of Average PSNR Differences Between RD Curves,” VCEG-M33, Apr. 2001.
    [41] ISO/IEC 29199-3, “JPEG XR image coding system - Part 2: Motion JPEG XR.”
    [42] C.-Y. Chien, S.-C. Huang, C.-H. Pan, C.-M. Fang and L.-G. Chen, “Pipelined Arithmetic Encoder Design for Lossless JPEG XR Encoder,” International Symposium on Consumer Electronics, pp. 144-147, May 2009.
    [43] C.-H. Pan, C.-Y. Chien, W.-M. Chao, S.-C. Huang and L.-G. Chen, “Architecture design of full HD JPEG XR encoder for digital photography applications,” IEEE Transactions on Consumer Electronics, vol. 54, no. 3, pp. 963-971, Aug. 2008.
    [44] C.-Y. Chien, S.-C. Huang, S.-H. Lin, Y.-C. Huang, Y.-C. Chen, L.-C. Chou, T.-D. Chuang, Y.-W. Chang, C.-H. Pan and L.-G. Chen, “A 100 MHz 1920×1080 HD-Photo 20 frames/sec JPEG XR Encoder Design,” 15th IEEE International Conference on Image Processing, pp. 1384-1387, Oct. 2008.
    [45] K. Hattori, H. Tsutsui, H. Ochi and Y. Nakamura, “A High-Throughput Pipelined Architecture for JPEG XR Encoding,” IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-Time Multimedia, pp. 9-17, Oct. 2009.
    [46] D. El Mezeni, A. Berić, E. van Dalen and L. Saranovac, “JPEG XR Encoder Implementation on A Heterogeneous Multiprocessor System,” 5th European Conference on Circuits and Systems for Communications (ECCSC), pp. 193-196, Nov. 2010.
    [47] ITU-T Rec. T.835 | ISO/IEC 29199-5, “Information Technology - JPEG XR Image Coding System Part 5: Reference Software,” 2010.
    [48] Ashampoo photo commander. Available: https://www.ashampoo.com/en/usd/fdl.
    [49] XnView. Available: http://www.xnview.com/.
    [50] G. Sullivan, and T. Wiegand, “Rate-Distortion Optimization for Video Compression, IEEE Signal Processing Magazine, ” vol. 15, no. 6, pp. 74-90, Nov. 1998.
    [51] J. C. Wang, J. F. Wang, J. F. Yang, and J. T. Chen, “A Fast Mode Decision Algorithm and Its VLSI Design for H.264/AVC Intra-Prediction, IEEE Transactions on Circuits and System for Video Technology, ” vol. 17, no. 10, pp. 1414–1422, Oct. 2007.
    [52] A. C. Tsai, J. F. Wang, J. F. Yang, and W. G. Lin, “Effective Subblock-Based and Pixel-Based Fast Direction Detections for H.264 Intra Prediction,” IEEE Transactions on Circuits and System for Video Technology, vol. 18, no. 7, pp. 975-982, July 2008.
    [53] Joint Video Team, H.264/AVC Reference Software JM17.1. Available: http://iphome.hhi.de/suehring/tml/download/
    [54] K, M. Yang, M. T. Sun, and L. Wu, “A Family of VLSI Designs for the Motion Compensation Block-Matching Algorithm,” IEEE Transactions on Circuits and System for Video Technology, vol. 36, no. 10, pp. 1317-1325, Oct. 1989.
    [55] X. Li, R. Chopra and K. W. Hsu, “Novel VLSI Architecture of Motion Estimation for H.264 Standard,” in Proceedings of IEEE International SOC Conference, pp. 117-118. Sept. 2005.
    [56] S. Yao, H.-J. Guo, L. Yu, and K. Zhang, “A Hardware Implementation for Full Search Motion Estimation of AVS with Search Center Prediction, “IEEE Transactions on Consumer Electronics,” vol.52, no. 4, pp: 1356-1361, Nov. 2006.
    [57] R. Li, B. Zeng, and M. L. Liou, “A New Three-Step search Algorithm for Block Motion Estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 4, no. 4, pp. 438-442, Aug. 1994.
    [58] Z. Liu, Y. Huang, Y. Song, S. Goto and T. Ikenaga, “Hardware-Efficient Propagate Partial SAD Architecture for Variable Block Size Motion Estimation in H.264/AVC,” Proceedings of the 17th ACM Great Lakes symposium on VLSI, pp. 160-163, Mar. 2007.
    [59] S. Y. Yap and J. V. McCanny, “A VLSI Architecture for Variable Block Size Video Motion Estimation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, no.7, pp 384-389, July 2004.
    [60] J. Kim and T. Park, “A Novel VLSI Architecture for Full-Search Variable Block-Size Motion Estimation,” IEEE Transactions on Consumer Electronics, vol. 55, no. 2, pp. 728-733, May 2009.
    [61] Z. He, M. L. Liou, Philip. C. H. Chan and R. Li, “An Efficient VLSI Architecture for New Three-Step Search Algorithm,” Proceedings of the 38th Midwest Symposium on Circuits and Systems, pp. 1228-1231, Aug 1995.
    [62] R. C. Gonzalez and R. E. Woods, “Digital Image Process,” Prentice-Hall, N.J., 2002.
    [63] R. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 29, pp.1153-1160, Dec. 1981.
    [64] M. Hadhoud, M.I. Dessouky and F.E.A. EI-Samie, “Adaptive Image Interpolation Based on Local Activity Levels,” in Proceedings of the Twentieth National Radio Science Conference, pp. C4-1-8, Mar. 2003.
    [65] X. Li and M.T. Orchard, “New Edge-Directed Interpolation,” IEEE Transactions on Image Processing, vol. 10, no 10, pp. 1521-1527, Oct. 2001,
    [66] I. Sobel and G. Feldman, “A 3x3 Isotropic Gradient Operator for Image Processing,” presented at a talk at the Stanford Artificial Project in 1968, unpublished but often cited, orig. in Pattern Classification and Scene Analysis, Duda, R. and Hart, P., John Wiley and Sons,'73, pp. 271-2.
    [67] Y. C. Lan, “Adaptive Digital Zoom Techniques Based on Hypothesized Boundary,” master thesis, National Taiwan University, 1999.
    [68] A. V. Oppenheim, R. W. Schafer and J. R. Burk, “Discrete-Time Signal Processing,” Prentice-Hall, N.J., 1989.

    無法下載圖示 校內:2026-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE