簡易檢索 / 詳目顯示

研究生: 吳佳玲
Wu, Jia-Ling
論文名稱: 射頻磁控濺鍍法製備氧化鋅基可撓式透明導電薄膜之光電特性探討及其在薄膜電晶體之應用
Investigations of the properties of ZnO-based TCO thin films grown via rf sputtering deposition method on flexible substrates for thin-film transistor applications
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 139
中文關鍵詞: 射頻磁控濺鍍法氧化鋅基薄膜氧化銦鎵鋅
外文關鍵詞: RF sputtering method, ZnO-based films, GZO, IGZO
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅薄膜擁有N型導電性及高穿透度特性可應用為透明電極、太陽能電池及薄膜電晶體等電子元件。本文中,利用射頻磁控濺鍍法加入氧化鋅緩衝層使氧化鋅參鎵的透明導電膜具有高figure of merit、好的薄膜附著性,以及較佳的抗撓曲能力。當我們加入100奈米的氧化鋅緩衝層後,可改善氧化鋅鎵薄膜的穿透度、載子濃度、霍爾載子遷移率、電阻率和figure of merit,分別從原本的88.3 到 94.45%, -2.89×1021 到 -3.39×1021 cm-3, 1.76 到 7.97 cm2/V-s, 1.32×10-3 到 2.201×10-4 Ω-cm, 和 2.40×10-2 到 3.20×10-1 Ω-1。另外,在抗撓曲方面,當加入100奈米的氧化鋅緩衝層其向外撓曲和向內撓曲2000次時,其應變分別從原本的2.063 × 10-3 和 2.203 × 10-3 分別減少至 1.74 ×10-3 and 1.966 × 10-3。證明氧化鋅鎵/氧化鋅/PES塑膠基板相較於氧化鋅鎵/PES塑膠基板結構具有較好的抗撓曲特性,較適合應用在軟性光電元件上。
    此外,我們也利用射頻磁控濺鍍法製備純氧化鋅薄膜電晶體,並具有系統性的探討臭氧處理對於氧化鋅薄膜電晶體之影響。在許多鍍膜方法裡,利用射頻磁控濺鍍法,在低溫製程中可具有較高的鍍率。研究中顯示,在經16分鐘的臭氧處理後氧化鋅薄膜有較少的氧空缺、增強結晶性、降低薄膜應變和減少表面粗糙度而使得其有較高的表面能進而使上層的氧化鋅鎵源極和汲極電極有較好的附著性,進而使薄膜電晶體具有較好的電特性。
    近年來,非晶相金屬氧化物薄膜電晶體 (氧化鋅銦鎵)因為擁有高載子遷移率以及高穿透度、高開口率和較高的開關比,較適合應用於主動式陣列有機發光二極(AMOLED),而受到矚目。本文中我們成功利用先前所開發的氧化鋅鎵/氧化鋅緩衝層結構的透明導電膜製作成源極和汲極電極並將其應用在氧化鋅銦鎵薄膜電晶體上。文章中,我們使用兩種結構分別為雙層氧化鎵/100奈米的氧化鋅緩衝層和單層氧化鎵作為薄膜電晶體的源極和汲極,比較其特性和探討其相關機制。因為雙層結構氧化鎵/100奈米的氧化鋅緩衝層因具有較高的表面能62.07 mJ/m2,進而使氧化鋅銦鎵通道層具有較好的附著性。此雙層結構氧化鎵/100奈米的氧化鋅緩衝層之源極和汲極應用在氧化鋅銦鎵薄膜電晶體上具有較優異的元件特性,其載子遷移率、次臨界擺幅、電荷捕捉和開關比分別為13.5 cm2V-1S-1、 0.43 V/decade、 5.65× 1012 eV-1cm-2、 和 3.56 × 107。
    最後,我們提出利用射頻磁控濺鍍法製作出氧化鋅銦鎵/5-奈米的氧化鋅鎵的雙通道層結構應用於氧化鋅基的薄膜電晶體上。相較於氧化鋅銦鎵單通道結構,氧化鋅銦鎵/5-奈米的氧化鋅鎵的雙通道層結構因具有較低的薄膜粗糙度1.89 nm和較高的薄膜密度5.87 g/cm3。另外,此雙通道也因為具有較高的表面能60.07 mJ/m2,進而使之後的氧化鋅鎵源極汲極電極具有較好的附著性。此氧化鋅銦鎵/5-奈米的氧化鋅鎵之雙通道層結構,應用在氧化鋅銦鎵薄膜電晶體上具有較優異的元件特性,其載子遷移率、次臨界擺幅、電荷捕捉和開關比分別為18.92 cm2V-1S-1, 0.33 V/decade, 4.25 × 10 12 eV-1cm-2, and 1.33 × 108。此結果顯示利用射頻磁控濺鍍法製備氧化鋅銦鎵/5-奈米的氧化鋅鎵的雙通道層結構即使氧化鋅薄膜電晶體具有優異的元件特性,將來可以廣泛應用於軟性電子元件。

    Zinc oxide (ZnO) thin films with n-type conductivity and high transparency have been applied in devices such as transparent electrodes, photovoltaic cells, and thin-film transistors (TFTs). In this work, ZnO-based films were deposited by RF sputtering method and ZnO films were used as the buffer layers to enhance the figure of merit, adhesion properties, and bending durability properties of Ga-doped ZnO (GZO) transparent conductive oxide thin films on flexible PES substrates. With the addition of an optimized 100-nm-thick ZnO buffer layer, the transmittance, carrier concentration, Hall mobility, resistivity, and figure of merit of GZO films improved from 88.3 to 94.45%, -2.89×1021 to -3.39×1021 cm-3, 1.76 to 7.97 cm2/V-s, 1.32×10-3 to 2.201×10-4 Ω-cm, and 2.40×10-2 to 3.20×10-1 Ω-1, respectively. With insertion of 100-nm-thick ZnO buffer layers, the strain of GZO films without ZnO after outward and inward bending for 2000 cycles decreased from 2.063 × 10-3 and 2.203 × 10-3 to 1.74 ×10-3 and 1.966 × 10-3, respectively. Accordingly, the GZO/ZnO/PES structure can be a viable alternative for increasing the bending durability of GZO films deposited on PES substrates for use in flexible optic-electrical devices.
    In addition, effect of UV-ozone treatment on the performance of ZnO TFTs fabricated by RF sputtering deposition technique was systematically investigated. As a deposition method, sputtering was applicable to the low temperature process with high deposition rate. Moreover, The ZnO films were then subjected to 16 minutes of ultraviolet (UV)-ozone treatment, which resulted in fewer oxygen vacancies, enhanced crystallization, lower strain, lower surface roughness, and higher thin film density, as well as improved surface energy and adhesion properties of the gallium zinc oxide (GZO) source/drain electrodes.
    To study amorphous metal oxide thin films, InGaZnO (IGZO) films were prepared by RF sputtering deposition technique for application as active layers in TFTs. IGZO TFTs are attractive for use in active-matrix organic light-emitting diode (AMOLED) displays due to their high electrical mobility, transparency in visible light, and high on/off ratios. In this research, top-gate bottom-contact thin-film transistors (TFTs) made with amorphous indium gallium zinc oxide (α-IGZO) active layers were grown using the radio-frequency sputtering technique. Two kinds of source and drain (S/D) electrodes, namely bi-layer GZO/100-nm ZnO buffer layer/Corning 1737 and single-layer GZO/Corning 1737, used in the TFT devices and the electric characteristics of the devices were compared. The bi-layer GZO/100-nm ZnO buffer layer S/D electrodes were more stable and suitable for fabricating TFTs because of their low surface roughness of 0.817 nm and high thin film density of 5.94 g/cm3. Additionally, the bi-layer GZO/100-nm ZnO buffer layer had better adhesion to neighboring α-IGZO active layers due to its high surface energy of 62.07 mJ/m2. The μsat, S.S., Nt, and ION/OFF values of the top-gate bottom-contact α-IGZO TFT with bi-layer GZO/100-nm ZnO buffer layer S/D electrodes were 13.5 cm2V-1S-1, 0.43 V/decade, 5.65× 1012 eV-1cm-2, 3.56 × 107, respectively.
    Finally, the α-IGZO/5-nm GZO double active layer structure was applied to fabricate low-temperature high-performance sputter-processed α-IGZO TFTs. Generally, the α-IGZO/5-nm GZO double active layer thin films were very stable and suitable than α-IGZO single active layer for fabricating the thin film transistors because of its low surface roughness of 1.89 nm and high thin film density of 5.87 g/cm3. Additionally, α-IGZO/GZO demonstrated the best adhesion properties to the neighboring thin film layers based on its high surface energy of 60.07 mJ/m2. The μsat, S.S., Nt, and ION/OFF of the bottom-gate α-IGZO/GZO double-active layer devices characteristics were 18.92 cm2V-1S-1, 0.33 V/decade, 4.25 × 10 12 eV-1cm-2, and 1.33 × 108, respectively. The obtained results demonstrate that the α-IGZO/GZO double active layer TFT could be taken as a TFT structure candidate for application in large-area-flat-panel displays.

    Table of Contents Abstract (English)..........................................................................................................................I Abstract (Chinese)......................................................................................................................IV 致謝............................................................................................................................. VI List of Journal Paper Publications............................................................................. VII Table of Contents.......................................................................................................VIII List of Tables...............................................................................................................XI List of Figures...........................................................................................................XIII Chapter 1 Introduction................................................................................................1 1.1 Background..........................................................................................................1 1.2 Motivation............................................................................................................2 1.3 Organization of this Thesis...................................................................................4 Chapter 2 Theory and Literature Review..................................................................7 2.1 Transparent conductive oxide...............................................................................7 2.2 Application of TFTs.............................................................................................8 2.3 Overview of thin film transistor...........................................................................9 2.4 Properties of Zinc oxide.....................................................................................11 2.5 Devices structure of Thin Film Transistors .......................................................12 2.6 Basic operation of Thin Film Transistor............................................................13 2.7 Overview of Surface energy..............................................................................16 2.8 Overview of X-Ray Reflectivity (XRR) ...........................................................19 2.9 XPS.....................................................................................................................20 Chapter 3 Experiments and measurement techniques...........................................23 3.1 Experimental methods........................................................................................23 3.1.1The RF sputtering system.............................................................................23 3.1.2 The RF sputtering deposition parameters....................................................25 3.1.3 The Bending durability systems..................................................................26 3.1.4 UV-ozone treatment....................................................................................26 3.2 Characterization for materials and devices properties.......................................26 3.2.1 Glancing Angle Of X-ray Diffraction and XRR Spectroscopy...................26 3.2.2 Contact angle measurement.........................................................................27 3.2.3 XPS measurements......................................................................................27 3.2.4 UV transmittance.........................................................................................27 3.2.5 Hall effect measurement.............................................................................27 3.2.6 semiconductor parameter analyzer..............................................................29 Chapter 4 Results and Discussions...........................................................................30 4.1 Effects of ZnO Buffer Layer on Characteristics of ZnO:Ga Films Grown on Flexible Substrates: Investigation of Surface Energy, Electrical, Optical, and Structural Properties........................................................................................30 4.2 Effect of ZnO Buffer Layer on the Bending Durability of ZnO:Ga Films Grown on Flexible Substrates: Investigation of Surface Energy, Electrical, Optical, and Structural Properties..................................................................................34 4.3 Effect of UV-ozone treatment on the performance of ZnO TFTs fabricated by RF sputtering deposition technique technique.................................................38 4.3.1 XPS analysis...............................................................................................38 4.3.2 Strain calculation from X-ray data.............................................................39 4.3.3 Hall measurement.......................................................................................41 4.3.4 XRR analysis of ZnO films........................................................................41 4.3.5 Surface energy analysis..............................................................................42 4.3.6 Hall measurement of GZO S/D electrodes.................................................43 4.3.7 TFT characteristics.....................................................................................43 4.4 Comparison of Physical and Electrical Properties of GZO/ZnO Buffer Layer and GZO as Source and Drain Electrodes of α-IGZO Thin-Film Transistors………………................................................................................45 4.5 X-Ray Reflectivity and Surface Energy Analyses of the Physical and Electrical Properties of α-IGZO/GZO Double Active Layer Thin Film Transistors.......51 Chapter 5 Conclusions and Suggestions...............................................................56 5.1 Conclusions.....…................................................................................................56 5.2 Future work.....…................................................................................................59 References................................................................................................................60 List of Tables Table 2.1 Comparison between oxide semiconductor TFTs and the other available technologies....................................................................................................82 Table 2.2 Physical properties of wurtzite ZnO.............................................................82 Table 2.3 Surface tension components of test liquids..................................................83 Table 3.1 The detailed deposition conditions of the ZnO buffer layer........................83 Table 3.2 Deposition parameters of dielectric layer, active layer, and S/D electrode thin films........................................................................................................84 Table 3.3 The detail thin films deposition parameters of the bottom gate TTFT parts used double IGZO/GZO and single IGZO as active layer structures.............84 Table 4.1 Roughness data of GZO/ZnO films deposited on PES substrates without a ZnO buffer layer and with ZnO buffer layers with various thicknesses........85 Table 4.2 Contact angle data of ZnO films with different thicknesses deposited on PES substrates................................................................................................85 Table 4.3 Contact angle and figure of merit of GZO films deposited on PES substrates without a ZnO buffer layer and with ZnO buffer layers with different thicknesses......................................................................................................86 Table 4.4 The characteristics of the 100-nm GZO/100-nm ZnO/PES (Sample I structure) and 100-nm GZO/PES (Sample II structure) before bending tests………………………………………………………………………….86 Table 4.5 The effective strain (︳τ ︳) of Samples I and II after FO and FI bending at 2000 cycles.....................................................................................................87 Table 4.6 The surface energy of the 100-nm ZnO buffer layer/PES and bare PES at FO and FI bending cycles of 1000, 1200, 1400, 1600, 1800, and 2000 times..............................................................................................................87 Table 4.7 Comparision the resistivity and transmittance values of the GZO/100-nm ZnO/PES in this work and other published work..........................................88 Table 4.8 The resistivity variation, thin film density, surface roughness, thickness, and contact angle of ZnO films (Samples I-VI)...................................................88 Table 4.9 Device performance of ZnO TFTs (Samples I-VI)………..............................89 Table 4.10 The TFT device performance comparison of this work, and other published work...............................................................................................89 Table 4.11 Effective strain (|τ|) of GZO films (samples I and II) ……….......................90 Table 4.12 Carrier concentration, Hall mobility, resistivity, and figure of merit of samples I and II..............................................................................................90 Table 4.13 Measured active layer of the XRR data of the thickness, surface roughness, thin film density for samples I and II.............................................................91 Table 4.14 The contact angle values of the samples I and II........................................91 Table 4.15 The TFT device performance comparison of sample I, II, and other published work................................................................................................................92 Table 4.16 The measured active layer of the XRR data of the thickness, surface roughness, thin film density for the α-IGZO/GZO (Sample Ⅰ) and α-IGZO (Sample Ⅱ) ...................................................................................................93 Table 4.17 The surface energy data (γ_s) of α-IGZO/GZO double active layer (Sample Ⅰ) and α-IGZO single active layer (Sample Ⅱ) ..........................................93 Table 4.18 Comparable the TFTs device performance values of α-IGZO/GZO double active layer (Sample Ⅰ) and GZO single active layer (Sample Ⅱ) in this work and other published works....................................................................94 List of Figures Fig. 2.1 Transparent displays: (a) early vision, in H.G. Wells’ 1930s novel The Shape of Things to Come (b) Samsung’s 22” transparent LCD panel now being mass-produced in 2011...................................................................................95 Fig. 2.2 Transparent display technology evolution and global display market............95 Fig. 2.3 Cross-sectional view of a TFT-LCD panel.....................................................96 Fig. 2.4 The circuit schematic of an AMOLED pixel..................................................96 Fig. 2.5 Schematic cross-sectional views of TFTs: (a) adapted from Lilienfild, (b) Weimer, and (c) Spear …………...................................................................97 Fig. 2.6 Comparison of single-crystal silicon, a-Si:H, and poly-silicon structure.......97 Fig. 2.7 Comparison the orbital structure between Si and metal oxide semiconductors…………...............................................................................98 Fig. 2.8 Two types of crystal structure of ZnO............................................................98 Fig. 2.9 Schematics show some of the most conventional TFT structures, according to the position of the gate electrode and to the distribution of the electrodes relatively to the semiconductor.......................................................................99 Fig. 2.10 (a) The basic structure of a TFT and the corresponding energy band diagram as viewed through the gate for several conditions, including (b) equilibrium, (c) VGS <0 and (d) VGS >0............................................................................100 Fig. 2.11 The operation of TFT device......................................................................100 Fig. 2.12 Typical (a) output and (b) transfer characteristic of a n-type oxide TFT...............................................................................................................101 Fig. 3.1 The sputtering system...................................................................................102 Fig. 3.2 The actually system diagram of the RF magnetron sputtering machine (a) 3 inch and (b) 2 inch in our lab.......................................................................103 Fig. 3.3 The bending test system (bending radius = 1 cm).....................................104 Fig. 3.4 The simple model schemes of the samples (a) bent outwards (face-out, FO) and (b) inwards (face-in, FI).........................................................................104 Fig. 3.5 The UV-ozone treatment system...................................................................105 Fig. 3.6 The GXRD and XRR system........................................................................106 Fig. 3.7 The contact angle system..............................................................................106 Fig. 3.8 The XPS system............................................................................................107 Fig. 3.9 The UV transmittance machine.....................................................................108 Fig. 3.10 The schematic of the Hall effect.................................................................108 Fig. 3.11 The Hall effect of HMS-3000.....................................................................109 Fig. 3.12 The semiconductor parameter analyzer (Agilent 4155C) ..........................109 Fig. 4.1 XRD patterns of ZnO films with thicknesses ranging from 50 to 200 nm deposited on PES substrates ........................................................................110 Fig. 4.2 XRD patterns of GZO films deposited with ZnO buffer layers with thicknesses ranging from 0 to 200 nm on PES substrates............................111 Fig. 4.3 Transmittance of GZO films deposited with ZnO buffer layers with thicknesses ranging from 0 to 200 nm on PES substrates............................112 Fig. 4.4 Resistivity, carrier concentration, and mobility of GZO films deposited with ZnO buffer layers with thicknesses ranging from 0 to 200 nm on PES substrates......................................................................................................112 Fig. 4.5 Surface energy of bare PES substrate and ZnO with thicknesses of 50, 100, 150, and 200 nm deposited on PES substrates.............................................113 Fig. 4.6 Surface energy of GZO films deposited with ZnO buffer layers with thicknesses ranging from 0 to 200 nm on PES substrates............................114 Fig. 4.7 The FO and FI bending tests on the changes of resistance, ΔR/R0, of Samples I and II. Inset shows the enlarged ΔR/R0 variation in the FO and FI...........115 Fig. 4.8 (a) The variation in ︳ΔT/T0 ︳of Samples I and II with the increasing FO and FI bending cycles. Note that the T0 of FO Sample I, FI Sample I, FO Sample II, and FI Sample II are 97.82, 98.36, 93.58, and 92.88%, respectively. (b) The variation in the figure of merit of Samples I and II with the increasing FO and FI bending cycles.....................................................116 Fig. 4.9 (a) The X-ray diffraction patterns of Sample I before and after FO and FI bending at 2000 cycles. (b) The X-ray diffraction patterns of Sample II before and after FO and FI bending at 2000 cycles. The corresponding (002) full-width at half-maximum (FWHM) of each sample is also shown..........117 Fig. 4.10 The surface energy data (γ_s) of the 100-nm ZnO/PES and bare PES at FO and FI bending cycles of 1000, 1200, 1400, 1600, 1800, and 2000 times.............................................................................................................118 Fig. 4.11 The surface energy comparison of Samples I and II before and after FO and FI bending at 2000 cycles.............................................................................118 Fig. 4.12 Schematic structure GZO/ZnO/SiO2/P-type Si TFT...................................119 Fig. 4.13 The O1s XPS spectra of (a) Sample I, (b) Sample II, (c) Sample III, (d) Sample IV, (e) Sample V, (f) Sample VI.....................................................120 Fig. 4.14 XRD patterns of Samples (a) I, (b) II, (c) III, (d) IV, (e) V, and (f) VI.......121 Fig. 4.15 Representative reflectivity spectra of ZnO films deposited on SiO2/Si substrates......................................................................................................121 Fig. 4.16 (a) Surface energy (γ_s) of ZnO active layer films, (b) Carrier concentration, Hall mobility, and resistivity of GZO S/D electrode films deposited on ZnO active layers as a function of UV-ozone treatment duration........................122 Fig. 4.17 (a) Transfer [ID vs. gate voltage (ID-VG) (at a fixed VD of 40 V)] characteristics of ZnO TFTs (Samples I-VI), Output [drain current vs. drain voltage (ID-VD)] characteristics of (b) Sample I, (c) Sample II, (d) Sample III, (e) Sample IV, (f) Sample V, and (g) Sample VI..........................................123 Fig. 4.18 (a) Device structure of sample I α-IGZO TTFTs (b) Device structure of sample II α-IGZO TTFTs.............................................................................127 Fig. 4.19 XRD patterns of (a) sample I and (b) sample II on glass substrates...........128 Fig. 4.20 Transmittance of samples I and II...............................................................128 Fig. 4.21 XRR patterns of samples I and II................................................................129 Fig. 4.22 TCO surface roughness topographies and plane views of (a) sample I and (b) sample II obtained from AFM measurement...............................................130 Fig. 4.23 Surface energy data (γ_s) of sample I (bi-layer GZO/100-nm ZnO buffer layer) and sample II (single-layer GZO) on glass substrates.......................131 Fig. 4.24 (a) Transfer [ID vs. gate voltage (ID-VG) (at a fixed VD of 40 V)] characteristics of TFTs with samples I and II, and output characteristics [drain current vs. drain voltage (ID-VD)] of TFTs with (b) sample I and (c) sample II.......................................................................................................132 Fig. 4.25 (a) Device structure of α-IGZO/GZO double active layer TFTs (Sample I) and (b) α-IGZO single active layer TFTs (Sample II)….............................134 Fig. 4.26 The XRR figures of α-IGZO/GZO double active layer (Sample I) and α-IGZO single active layer (Sample II)........................................................135 Fig. 4.27 The AFM topographies and plane view figures of (a) α-IGZO/GZO double active layer (Sample I) and (b) α-IGZO single active layer (Sample II)......136 Fig. 4.28 The Surface energy data (γ_s) of α-IGZO/GZO double active layer (Sample I) and α-IGZO single active layer (Sample II) ................................................137 Fig. 4.29 Thin film transistors of output characteristics [drain current vs. drain voltage (ID-VD)] of (a) Sample Ⅰ, (b) Sample Ⅱ, and (c) transfer [ID vs. gate voltage (ID-VG) and ID1/2 vs. gate voltage (ID1/2-VG) (at the fixed VD of 40 V)] characteristics of SamplesⅠand Ⅱ, respectively ......................................138

    [1] Y. D. Ko, K. C. Kim, and Y. S. Kim, “Effects of substrate temperature on the Ga-doped ZnO films as an anode material of organic light emitting diodes,” Superlattices and Microstructures, vol. 51, no. 6, pp. 933-941, 2012.
    [2] Y. C. Lin, T. Y. Chen, L. C. Wang, and S. Y. Lien, “Comparison of AZO, GZO, and AGZO thin films TCOs applied for a-Si solar cells,” Journal of The Electrochemical Society, vol. 159, no. 6, pp. H599, 2012.
    [3] D. J. Yun, and S. W. Rhee, “Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices,” ACS Appl Mater Interfaces, vol. 4, no. 2, pp. 982-989, Feb, 2012.
    [4] Y. Wang, “Resistive-switching mechanism of transparent nonvolatile memory device based on gallium zinc oxide,” Physica Status Solidi (a), vol. 209, no. 2, pp. 364-368, 2012.
    [5] J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, “Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel,” Nanoscale, vol. 4, no. 20, pp. 6408-14, 2012.
    [6] H. W. Fang, T. E. Hsieh, and J. Y. Juang, “Effects of indium concentration on the efficiency of amorphous In-Zn-O/SiOx/n-Si hetero-junction solar cells,” Solar Energy Materials and Solar Cells, vol. 121, pp. 175-181, 2014.
    [7] Y. H. Tai, Y. F. Kuo, and Y. H. Lee, “Photosensitivity analysis of low-temperature poly-si thin-film transistor based on the unit-lux-current,” IEEE Transactions on Electron Devices, vol. 56, no. 1, pp. 50-56, 2009.
    [8] K. J. Ahn, J. H. Park, B. K. Shin, W. Lee, G. Y. Yeom, and J.-M. Myoung, “Effect of sputtering power on the properties of ZnO:Ga transparent conductive oxide films deposited by pulsed DC magnetron sputtering with a rotating cylindrical target,” Applied Surface Science, vol. 271, pp. 216-222, 2013.
    [9] X. Wu, M. Kang, N. Zhao, W. Wei, and Y. Sun, “Dimethyl carbonate synthesis over ZnO-CaO bi-functional catalysts,” Catalysis Communications, vol. 46, pp. 46-50, 2014.
    [10] P. Ray, and V. Ramgopal Rao, “Al-doped ZnO thin-film transistor embedded micro-cantilever as a piezoresistive sensor,” Applied Physics Letters, vol. 102, no. 6, 064101-1-064101-4 ,2013.
    [11] C. Y. Liang, F. Y. Gan, P. T. Liu, F. S. Yeh, S. H. L. Chen, and T. C. Chang, “A novel self-aligned etch-stopper structure with lower photo leakage for AMLCD and sensor applications,” IEEE Electron Device Letters, vol. 27, no. 12, pp. 978-980, 2006.
    [12] S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J. H. Hur, and J. Jang, “Effect of Mechanical and Electrical Stresses on the Performance of an a-Si:H TFT on Plastic Substrate,” Journal of the Electrochemical Society, vol. 151, no. 3, pp. G167-G170, 2004.
    [13] J. M. Kim, S. J. Lim, T. Nam, D. Kim, and H. Kim, “The effects of ultraviolet exposure on the device characteristics of atomic layer deposited-ZnO:N thin film transistors,” Journal of the Electrochemical Society, vol. 158, no. 5, pp. J150-J154, 2011.
    [14] S. H. K. Park, C. S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J. L. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Advanced Materials, vol. 21, no. 6, pp. 678-682, 2009.
    [15] T. Kawaharamura, H. Orita, T. Shirahata, A. Yoshida, S. Fujita, and T. Hirao, “Influence of annealing under reducing ambient on properties of ZnO thin films prepared by mist CVD,” Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 9, no. 2, pp. 190-193, 2012.
    [16] S. Nicolay, M. Benkhaira, L. Ding, J. Escarre, G. Bugnon, F. Meillaud, and C. Ballif, “Control of CVD-deposited ZnO films properties through water/DEZ ratio: Decoupling of electrode morphology and electrical characteristics,” Solar Energy Materials and Solar Cells, vol. 105, pp. 46-52, 2012.
    [17] S. R. Thomas, G. Adamopoulos, and T. D. Anthopoulos, “Be-Doped ZnO thin-film transistors and circuits fabricated by spray pyrolysis in air,” IEEE/OSA Journal of Display Technology, vol. 9, no. 9, pp. 688-693, 2013.
    [18] V. Senay, S. Pat, S. Korkmaz, T. Aydogmus, S. Elmas, S. Ozen, N. Ekem, and M. Z. Balbag, “ZnO thin film synthesis by reactive radio frequency magnetron sputtering,” Applied Surface Science, in press, 2013.
    [19] K. H. Ko, Y. H. Joung, W. S. Choi, M. Park, J. Lee, and H. S. Hwang, “Structural and optical properties of a radio frequency magnetron-sputtered ZnO thin film with different growth angles,” Nanoscale Research Letters, vol. 7, pp. 1-11, 2012.
    [20] C. H. Chia, W. C. Tsai, and W. C. Chou, “Preheatingerature effect on structural and photoluminescent properties of sol-gel derived ZnO thin films,” Journal of Luminescence, vol. 148, pp. 111-115, 2014.
    [21] S. Das, K. Bhattacharjee, S. Maitra, and G. C. Das, “Effect of oxygen partial pressure on the photoluminescence properties of sol-gel synthesized nano-structured ZnO thin films,” Thin Solid Films, vol. 550, pp. 65-70, 2014.
    [22] X. Zou, G. Fang, J. Wan, N. Liu, H. Long, H. Wang, and X. Zhao, “Enhanced performance of a-IGZO thin-film transistors by forming AZO/IGZO heterojunction source/drain contacts,” Semiconductor Science and Technology, vol. 26, no. 5, 2011.
    [23] Y. S. Kim, W. J. Hwang, K. T. Eun, and S. H. Choa, “Mechanical reliability of transparent conducting IZTO film electrodes for flexible panel displays,” Applied Surface Science, vol. 257, no. 18, pp. 8134-8138, 2011.
    [24] S. P. Liu, D. S. Wuu, S. L. Ou, Y. C. Fu, P. R. Lin, M. T. Hung, and R. H. Horng, “Highly Ultraviolet-Transparent ZnO:Al conducting layers by pulsed laser deposition,” Journal of The Electrochemical Society, vol. 158, no. 5, pp. K127-K130, 2011.
    [25] H. K. Kim, K. J. Ahn, H. Jang, and H. Lee, “Dependence of electrical, optical, and structural properties on the thickness of GZO films prepared by CRMS,” Journal of The Electrochemical Society, vol. 159, no. 1, pp. H38-H43, 2012.
    [26] E. Fortunato, “Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence,” Thin Solid Films, vol. 442, no. 1-2, pp. 121-126, 2003.
    [27] Y. S. Park, H. K. Kim, and S. W. Kim, “Thin Ag layer inserted GZO multilayer grown by roll-to-roll sputtering for flexible and transparent conducting electrodes,” Journal of the Electrochemical Society, vol. 157, no. 8, pp. J301-J306, 2010.
    [28] W. S. Kim, Y. K. Moon, K. T. Kim, S. Y. Shin, B. D. Ahn, J. H. Lee, and J. W. Park, “Improvement in the negative bias temperature stability of ZnO based thin film transistors by Hf and Sn doping,” Thin Solid Films, vol. 519, pp. 6849-6852, 2011.
    [29] F. M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, and M. Kawasaki, “Modeling and simulation of polycrystalline ZnO thin-film transistors,” Journal of Applied Physics, vol. 94, no. 12, pp. 7768-7777, 2003.
    [30] S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Advanced Materials, vol. 22, no. 12, pp. 1346-1350, 2010.
    [31] L. Chien Cheng, W. Meng Lun, L. Kuang Chung, H. Shih-Hua, C. Yu Sheng, L. Gong-Ru, and H. JianJang, “Transparent ZnO thin-film transistors on Glass and plastic substrates using post-sputtering oxygen passivation,” Display Technology, Journal of, vol. 5, no. 6, pp. 192-197, 2009.
    [32] S. Yeob Park, K. Hwan Ji, H. Yoon Jung, J.-I. Kim, R. Choi, K. Seok Son, M. Kwan Ryu, S. Lee, and J. Kyeong Jeong, “Improvement in the device performance of tin-doped indium oxide transistor by oxygen high pressure annealing at 150C,” Applied Physics Letters, vol. 100, no. 16, 162108-1-162108-4, 2012.
    [33] S. I. Kim, C. J. Kim, J. C. Park, I. Song, S. W. Kim, H. Yin, E. Lee, J. C. Lee, and Y. Park, “High performance oxide thin film transistors with double active layers, ” Technical Digest - International Electron Devices Meeting, IEDM, 2008.
    [34] P. Barquinha, R. Martins, L. Pereira, and E. Fortunato, "Index," Transparent Oxide Electronics, pp. 287-295: John Wiley & Sons, Ltd, 2012.
    [35] 蘇泊沅, “溶膠凝膠法製備氧化鋅基薄膜之光電特性探討及其在薄膜電晶體之應用,” 電機工程學系碩博士班, 國立成功大學, 台南市, 2013.
    [36] R. A. Street, “Thin-film transistors,” Advanced Materials, vol. 21, no. 20, pp. 2007-2022, 2009.
    [37] J. E. Lilienfeld, “Method and apparatus for controlling electric currents,” U. S. Patent, pp. No. 1745175, 1930.
    [38] P. K. Weimer, “An evaporated thin-film triode,” Electron Devices, IRE Transactions on, vol. 8, no. 5, pp. 421-421, 1961.
    [39] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” Electron Devices, IEEE Transactions on, vol. 20, no. 11, pp. 995-1001, 1973.
    [40] W. E. Spear, and P. G. L. Comber, “Electronic properties of substitutionally doped amorphous Si and Ge,” Philosophical Magazine, vol. 33, no. 6, pp. 935-949, 1976.
    [41] W. E. Spear, and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Communications, vol. 88, no. 11-12, pp. 1015-1018, 1993.
    [42] M. Shur, and M. Hack, “Physics of amorphous silicon based alloy field‐effect transistors,” Journal of Applied Physics, vol. 55, no. 10, pp. 3831-3842, 1984.
    [43] W. E. Spear, P. G. Le Comber, S. Kinmond, and M. H. Brodsky, “Amorphous silicon p‐n junction,” Applied Physics Letters, vol. 28, no. 2, pp. 105-107, 1976.
    [44] S. W. Depp, A. Juliana and B. G. Huth, “Polysilicon FET devices for large area input/output applications,” in Electron Devices Meeting, 1980 International, pp. 703-706, 1980.
    [45] A. Juliana, S. W. Depp, B. Huth, and T. Sedgwick, “Thin-film polysilicon devices for flat-panel display circuitry,” Digest of Technical Papers - SID International Symposium (Society for Information Display). pp. 38-39.
    [46] T. Sameshima, S. Usui and M. Sekiya, “Xecl excimer laser annealing used in the fabrication of poly-si TFT's,” Electron Device Letters, IEEE, vol.7, no.5, pp. 276-278, 1986.
    [47] S. H. Yu, B. J. Kim, M. S. Kang, S. H. Kim, J. H. Han, J. Y. Lee, and J. H. Cho, “In/Ga-free, inkjet-printed charge transfer doping for solution-processed ZnO,” ACS Applied Materials and Interfaces, vol. 5, no. 19, pp. 9765-9769, 2013.
    [48] W. Jie, S. Junfei, D. Chengyuan, Z. Zhongfei, C. Yuting, Z. Daxiang, H. Zhe, and Z. Runze, “Effect of active layer deposition temperature on the performance of sputtered amorphous In—Ga—Zn—O thin film transistors,” Journal of Semiconductors, vol. 35, no. 1, pp. 014003, 2014.
    [49] C. Brox-Nilsen, J. Jin, Y. Luo, P. Bao, and A. M. Song, “Sputtered ZnO thin-film transistors with carrier mobility over 50 cm2/Vs,” Electron Devices, IEEE Transactions on, vol. 60, no. 10, pp. 3424-3429, 2013.
    [50] R. Hoffman, B. J. Norris, and J. Wager, “ZnO-based transparent thin-film transistors,” Applied Physics Letters, vol. 82, no. 5, pp. 733-735, 2003.
    [51] P. Carcia, R. McLean, M. Reilly, and G. Nunes Jr, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters, vol. 82, no. 7, pp. 1117-1119, 2003.
    [52] S. Brotherton, “Polycrystalline silicon thin film transistors,” Semiconductor Science and Technology, vol. 10, no. 6, pp. 721, 1995.
    [53] J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, and X. Zhan, “n‐Type Organic Semiconductors in Organic Electronics,” Advanced Materials, vol. 22, no. 34, pp. 3876-3892, 2010.
    [54] H. Sirringhaus, “Reliability of organic field‐effect transistors,” Advanced Materials, vol. 21, no. 38‐39, pp. 3859-3873, 2009.
    [55] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, pp. 044305, 2010.
    [56] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Japanese Journal of Applied Physics, vol. 45, no. 5S, pp. 4303, 2006.
    [57] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,” Journal of Non-Crystalline Solids, vol. 198, pp. 165-169, 1996.
    [58] H. Chiang, J. Wager, R. Hoffman, J. Jeong, and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,” Applied Physics Letters, vol. 86, no. 1, pp. 013503-013503-3, 2005.
    [59] R. Hoffman, “Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors,” Solid-State Electronics, vol. 50, no. 5, pp. 784-787, 2006.
    [60] P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Advanced Materials, vol. 18, no. 6, pp. 738-741, 2006.
    [61] W. Jackson, R. Hoffman, and G. Herman, “High-performance flexible zinc tin oxide field-effect transistors,” Applied Physics Letters, vol. 87, no. 19, pp. 193503, 2005.
    [62] N. Dehuff, E. Kettenring, D. Hong, H. Chiang, J. Wager, R. Hoffman, C.-H. Park, and D. Keszler, “Transparent thin-film transistors with zinc indium oxide channel layer,” Journal of Applied Physics, vol. 97, no. 6, pp. 064505, 2005.
    [63] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, “Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide,” Journal of Non-Crystalline Solids, vol. 352, no. 9, pp. 1749-1752, 2006.
    [64] B. Yaglioglu, H. Yeom, R. Beresford, and D. Paine, “High-mobility amorphous In2O3–10wt% ZnO thin film transistors,” Applied physics letters, vol. 89, no. 6, pp. 062103-1-062103-3, 2006.
    [65] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato, “Toward high-performance amorphous GIZO TFTs,” Journal of the Electrochemical Society, vol. 156, no. 3, pp. H161-H168, 2009.
    [66] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors,” Applied physics letters, vol. 90, no. 12, pp. 123512-1-123512-3, 2007.
    [67] J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, and S.-I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Applied physics letters, vol. 90, no. 26, pp. 262106-1-262106-3, 2007.
    [68] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, “Factors controlling electron transport properties in transparent amorphous oxide semiconductors,” Journal of Non-Crystalline Solids, vol. 354, no. 19, pp. 2796-2800, 2008.
    [69] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system,” Applied physics letters, vol. 90, no. 24, pp. 242114-1-242114-3, 2007.
    [70] L. Qiang, and R. Yao, “Analysis of temperature effect on a-Si: H thin film transistors,” Solid-State Electronics, vol. 81, pp. 13-18, 2013.
    [71] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488-492, 2004.
    [72] A. Bakin, A. El‐Shaer, A. C. Mofor, M. Al‐Suleiman, E. Schlenker, and A. Waag, “ZnMgO‐ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano‐LEDs,” Physica Status Solidi (c), vol. 4, no. 1, pp. 158-161, 2007.
    [73] A. Bakin, A. Behrends, A. Waag, H. Lugauer, A. Laubsch, and K. Streubel, “ZnO-GaN hybrid heterostructures as potential cost-efficient LED technology,” Proceedings of the IEEE, vol. 98, no. 7, pp. 1281-1287, 2010.
    [74] D. C. Look, “Recent advances in ZnO materials and devices,” Materials Science and Engineering: B, vol. 80, no. 1, pp. 383-387, 2001.
    [75] S. Kucheyev, J. Williams, C. Jagadish, J. Zou, C. Evans, A. Nelson, and A. Hamza, “Ion-beam-produced structural defects in ZnO,” Physical Review B, vol. 67, no. 9, pp. 094115, 2003.
    [76] D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, “Low- k Dielectric Materials,” Materials Today, vol. 7, no. 1, pp. 34-39, 2004.
    [77] M. E. Fragala, G. Malandrino, M. M. Giangregorio, M. Losurdo, G. Bruno, S. Lettieri, L. S. Amato, and P. Maddalena, “Structural, optical, and electrical characterization of ZnO and Al‐doped ZnO thin films deposited by MOCVD,” Chemical Vapor Deposition, vol. 15, no. 10‐12, pp. 327-333, 2009.
    [78] H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Solar Energy Materials and Solar Cells, vol. 94, no. 8, pp. 1379-1383, 2010.
    [79] M. Ortel, T. Balster, and V. Wagner, “Chemical composition and temperature dependent performance of ZnO-thin film transistors deposited by pulsed and continuous spray pyrolysis,” Journal of Applied Physics, vol. 114, no. 23, pp. 234502, 2013.
    [80] H. Tang, J. Xu, H. Li, Y. Dong, Y. Wang and F. Wu, “Characterization of zno thin film synthesized on alumina-rich spinel substrate by magnetron sputtering,” Applied Surface Science, vol.256, no.16, pp. 4934-4937, 2010.
    [81] Y. Fang, and T. Li, “Technological study of ZnO thin film preparation by Sol-Gel method,” Advanced Materials Research, vol. 846, pp. 1915-1918, 2014.
    [82] Y. J. Hu, W. Y. Pei, L. G. Ying, and L. S. Jun, “Photoluminescence properties of ZnO thin film prepared by Sol-Gel route,” Applied Mechanics and Materials, vol. 456, pp. 411-415, 2014.
    [83] D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, and K. Kato, “Low-temperature preparation of (002)-oriented ZnO thin films by sol–gel method,” Thin Solid Films, vol. 550, pp. 250-258, 2014.
    [84] A. C. Tickle, Thin-film transistors: a new approach to microelectronics: Wiley New York, 1969.
    [85] C. R. Kagan, and P. Andry, Thin-film transistors: CRC Press, 2003.
    [86] 鄭華琦, “溶液法半導性氧化鋅薄膜製備及其薄膜電晶體特性研究,” 交通大學材料科學與工程系所學位論文, no. 2008 年, pp. 1-107, 2008.
    [87] J. F. Wager, “Transparent electronics,” Science, vol. 300, no. 5623, pp. 1245-1246, 2003.
    [88] W. J. Park, H. S. Shin, B. Du Ahn, G. H. Kim, S. M. Lee, K. H. Kim, and H. J. Kim, “Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor,” Applied Physics Letters, vol. 93, no. 8, pp. 083508-1-083508-3, 2008.
    [89] S. Oertel, M. P. Jank, E. Teuber, A. J. Bauer, and L. Frey, “High-mobility metal-oxide thin-film transistors by spray deposition of environmentally friendly precursors,” Thin Solid Films, 2013.
    [90] D. Zhang, and H. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Applied Physics A, vol. 62, no. 5, pp. 487-492, 1996.
    [91] D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, 2006.
    [92] A. Rudawska, and E. Jacniacka, “Analysis for determining surface free energy uncertainty by the Owen–Wendt method,” International Journal of Adhesion and Adhesives, vol. 29, no. 4, pp. 451-457, 2009.
    [93] P. Dalet, E. Papon, and J.-J. Villenave, “Surface free energy of polymeric materials: relevancy of conventional contact angle data analyses,” Journal of Adhesion science and Technology, vol. 13, no. 8, pp. 857-870, 1999.
    [94] E. Lugscheider, and K. Bobzin, “The influence on surface free energy of PVD-coatings,” Surface and Coatings Technology, vol. 142, pp. 755-760, 2001.
    [95] M. H. V. C. Adão, B. J. V. Saramago, and A. C. Fernandes, “Estimation of the surface properties of styrene-acrylonitrile random copolymers from contact angle measurements,” Journal of Colloid and Interface Science, vol. 217, no. 1, pp. 94-106, 1999.
    [96] Y.-C. Chen, P.-C. Kao, and S.-Y. Chu, “UV-ozone-treated ultra-thin NaF film as anode buffer layer on organic light emitting devices,” Optics Express, vol. 18, no. 102, pp. A167-A173, 2010.
    [97] L. Hołysz, “Investigation of the effect of substrata on the surface free energy components of silica gel determined by thin layer wicking method,” Journal of Materials Science, vol. 35, no. 24, pp. 6081-6091, 2000.
    [98] H. J. Kim, J. W. Kim, H. H. Lee, T.-M. Kim, J. Jang, and J.-J. Kim, “Grazing incidence small-angle X-ray scattering analysis of initial growth of planar organic molecules affected by substrate surface energy,” The Journal of Physical Chemistry Letters, vol. 2, no. 14, pp. 1710-1714, 2011.
    [99] C. Extrand, “A thermodynamic model for contact angle hysteresis,” Journal of Colloid and Interface Science, vol. 207, no. 1, pp. 11-19, 1998.
    [100] M. Greiveldinger, and M. E. Shanahan, “A critique of the mathematical coherence of acid/base interfacial free energy theory,” Journal of Colloid and Interface Science, vol. 215, no. 1, pp. 170-178, 1999.
    [101] J. Drelich, “The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 116, no. 1, pp. 43-54, 1996.
    [102] H. Schonhorn, H. Frisch, and T. Kwei, “Kinetics of wetting of surfaces by polymer melts,” Journal of Applied Physics, vol. 37, no. 13, pp. 4967-4973, 2004.
    [103] A. Blythe, D. Briggs, C. Kendall, D. Rance, and V. Zichy, “Surface modification of polyethylene by electrical discharge treatment and the mechanism of autoadhesion,” Polymer, vol. 19, no. 11, pp. 1273-1278, 1978.
    [104] N. Zouvelou, X. Mantzouris, and P. Nikolopoulos, “Interfacial energies in oxide/liquid metal systems with limited solubility,” International Journal of Adhesion and Adhesives, vol. 27, no. 5, pp. 380-386, 2007.
    [105] S. Wu, Polymer interface and adhesion: M. Dekker, 1982.
    [106] F. Garbassi, M. Morra, E. Occhiello, L. Barino, and R. Scordamaglia, “Dynamics of macromolecules: a challenge for surface analysis,” Surface and Interface Analysis, vol. 14, no. 10, pp. 585-589, 1989.
    [107] J. M. Strobel, M. Strobel, C. S. Lyons, C. Dunatov, and S. J. Perron, “Aging of air-corona-treated polypropylene film,” Journal of Adhesion Science and Technology, vol. 5, no. 2, pp. 119-130, 1991.
    [108] E. Chason, and T. Mayer, “Thin film and surface characterization by specular X-ray reflectivity,” Critical Reviews in Solid State and Material Sciences, vol. 22, no. 1, pp. 1-67, 1997.
    [109] J. F. Watts, and J. Wolstenholme, “An introduction to surface analysis by XPS and AES,” An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH, May 2003., vol. 1, 2003.
    [110] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of: Perkin-Elmer: Boca Raton, FL, 1992.
    [111] G. Ertl, and J. Küppers, Low energy electrons and surface chemistry: VCH Verlagsgellschaft. Distribution, USA and Canada, VCH Publishers, 1985.
    [112] P. M. Martin, Handbook of deposition technologies for films and coatings: science, applications and technology: William Andrew, 2009.
    [113] D. M. Mattox, Handbook of physical vapor deposition (PVD) processing: William Andrew, 2010.
    [114] K. Seshan, Handbook of thin film deposition: William Andrew, 2012.
    [115] 蔡宜君, “氧化鋅基透明導電薄膜在可撓式基板上光電性質研究,” 成功大學奈米科技暨微系統工程研究所學位論文, pp. 1-95, 2011.
    [116] 曾宗亮, “氧化鋅基薄膜應用於可撓式透明導電膜及有機發光二極體,” 成功大學電機工程學系學位論文, 2013.
    [117] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” Journal of Applied Physics, vol. 87, no. 1, pp. 295, 2000.
    [118] D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Physical Review Letters, vol. 48, pp. 1559-1562, 1982.
    [119] R. B. Laughlin, “Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations,” Physical Review Letters, vol. 50, no. 18, pp. 1395-1398, 1983.
    [120] F. D. M. Haldane, “Fractional quantization of the Hall effect-A hierarchy of incompressible quantum fluid states,” Physical Review Letters, vol. 51, pp. 605-608, 1983.
    [121] T. T. Trinh, N. H. Tu, H. H. Le, K. Y. Ryu, K. B. Le, K. Pillai, and J. Yi, “Improving the ethanol sensing of ZnO nano-particle thin films—The correlation between the grain size and the sensing mechanism,” Sensors and Actuators B: Chemical, vol. 152, no. 1, pp. 73-81, 2011.
    [122] S.-H. Paeng, M.-W. Park, and Y.-M. Sung, “Transparent conductive characteristics of Ti:ITO films deposited by RF magnetron sputtering at low substrate temperature,” Surface and Coatings Technology, vol. 205, pp. S210-S215, 2010.
    [123] S. Lee, D. Cheon, W.-J. Kim, K.-J. Ahn, and W. Lee, “Combined effect of the target composition and deposition temperature on the properties of ZnO:Ga transparent conductive oxide films in pulsed dc magnetron sputtering,” Semiconductor Science and Technology, vol. 26, no. 11, pp. 115007, 2011.
    [124] Y. S. Kim, S. B. Heo, H. M. Lee, Y. J. Lee, I. S. Kim, M. S. Kang, D. H. Choi, B. H. Lee, M. G. Kim, and D. Kim, “Effects of electron irradiation on the properties of GZO films deposited with RF magnetron sputtering,” Applied Surface Science, vol. 258, no. 8, pp. 3903-3906, 2012.
    [125] S. Wook Shin, K. Ung Sim, S. M. Pawar, A. V. Moholkar, I. Ok Jung, J. Ho Yun, J.-H. Moon, J. Hyeok Kim, and J. Yong Lee, “Effect of a ZnO buffer layer on the properties of Ga-doped ZnO thin films grown on Al2O3 (0001) substrates at a low growth temperature of 250°C,” Journal of Crystal Growth, vol. 312, no. 9, pp. 1551-1556, 2010.
    [126] Q.-B. Ma, Z.-Z. Ye, H.-P. He, J.-R. Wang, L.-P. Zhu, and B.-H. Zhao, “Substrate temperature dependence of the properties of Ga-doped ZnO films deposited by DC reactive magnetron sputtering,” Vacuum, vol. 82, no. 1, pp. 9-14, 2007.
    [127] J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” Journal of Applied Physics, vol. 107, no. 6, pp. 063713, 2010.
    [128] L. Gong, J. Lu, and Z. Ye, “Room-temperature growth and optoelectronic properties of GZO/ZnO bilayer films on polycarbonate substrates by magnetron sputtering,” Solar Energy Materials and Solar Cells, vol. 94, no. 7, pp. 1282-1285, 2010.
    [129] Y. Setsuhara, K. Cho, K. Takenaka, M. Shiratani, M. Sekine, and M. Hori, “Plasma processing of soft materials for development of flexible devices,” Thin Solid Films, vol. 519, no. 20, pp. 6721-6726, 2011.
    [130] J. H. Cho, D. H. Lee, J. A. Lim, K. Cho, J. H. Je, and J. M. Yi, “Evaluation of the adhesion properties of inorganic materials with high surface energies,” Langmuir, vol. 20, no. 23, pp. 10174-10178, 2004.
    [131] C. M. Wu, S. H. Su, H. T. Wang, and M. Yokoyama, “Morphology transformations of pentacene on an UV-patternable polymer insulator and their effect on performance of flexible organic thin-film transistors,” Organic Electronics, vol. 13, no. 10, pp. 1962-1968, 2012.
    [132] W. K. Kim, B. J. Song, K. Hong, K. Kim, and J. L. Lee, “Effect of O2 Plasma Treatment of Mo on the Crystal Growth Mode of Pentacene of Organic Thin-Film Transistors,” Journal of The Electrochemical Society, vol. 156, no. 8, pp. H674, 2009.
    [133] G. Haacke, “New figure of merit for transparent conductors,” Journal of Applied Physics, vol. 47, no. 9, pp. 4086, 1976.
    [134] J. L. Wu, Y. C. Chen, H. Y. Lin, S. Y. Chu, C. C. Chang, C. J. Wu, and Y. D. Juang, “Effect of ZnO buffer layer on the bending durability of ZnO: Ga films grown on flexible substrates: Investigation of surface energy, electrical, optical, and structural properties,” IEEE Transactions on Electron Devices, vol. 60, no. 7, pp. 2324-2330, 2013.
    [135] Y. Leterrier, L. Médico, F. Demarco, J. A. E. Månson, U. Betz, M. F. Escolà, M. Kharrazi Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films, vol. 460, no. 1-2, pp. 156-166, 2004.
    [136] Z. L. Pei, X. B. Zhang, G. P. Zhang, J. Gong, C. Sun, R. F. Huang, and L. S. Wen, “Transparent conductive ZnO:Al thin films deposited on flexible substrates prepared by direct current magnetron sputtering,” Thin Solid Films, vol. 497, no. 1-2, pp. 20-23, 2006.
    [137] Y. Li, Z. Yu, W. Wang, Y. Fan, Z. Ding, and W. Xue, “Effects of SiO2 and TiO2 on resistance stabilities of flexible indium-tin-oxide films prepared by ion assisted deposition,” Rare Metals, vol. 28, no. 6, pp. 559-563, 2009.
    [138] A. P. Samantilleke, L. M. F. Rebouta, V. Garim, L. Rubio-Pena, S. Lanceros-Mendez, P. Alpuim, S. Carvalho, A. V. Kudrin, and Y. A. Danilov, “Cohesive strength of nanocrystalline ZnO:Ga thin films deposited at room temperature,” Nanoscale Research Letters, vol. 6, pp. 1-5, 2011.
    [139] C. Li, X. C. Li, P. X. Yan, E. M. Chong, Y. Liu, G. H. Yue, and X. Y. Fan, “Research on the properties of ZnO thin films deposited by using filtered cathodic arc plasma technique on glass substrate under different flow rate of O2,” Applied Surface Science, vol. 253, no. 8, pp. 4000-4005, 2007.
    [140] Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Applied Physics Letters, vol. 97, no. 23, pp. 233502-1-233502-3, 2010.
    [141] F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, “Energetics of native defects in ZnO,” Journal of Applied Physics, vol. 90, no. 2, pp. 824, 2001.
    [142] M. D. McCluskey, and S. J. Jokela, “Defects in ZnO,” Journal of Applied Physics, vol. 106, no. 7, pp. 071101, 2009.
    [143] D. J. Kim, D. L. Kim, Y. S. Rim, C. H. Kim, W. H. Jeong, H. S. Lim, and H. J. Kim, “Improved electrical performance of an oxide thin-film transistor having multistacked active layers using a solution process,” ACS Applied Materials and Interfaces, vol. 4, no. 8, pp. 4001-4005, 2012.
    [144] B. G. Kim, J. Y. Kim, S. J. Lee, J. H. Park, D. G. Lim, and M. G. Park, “Structural, electrical and optical properties of Ga-doped ZnO films on PET substrate,” Applied Surface Science, vol. 257, no. 3, pp. 1063-1067, 2010.
    [145] E. Fortunato, P. Barquinha, and R. Martins, “Oxide semiconductor thin-film transistors: A review of recent advances,” Advanced Materials, vol. 24, no. 22, pp. 2945-2986, 2012.
    [146] J. Gwang Um, M. Mativenga, P. Migliorato, and J. Jang, “Increase of interface and bulk density of states in amorphous-indium-gallium-zinc-oxide thin-film transistors with negative-bias-under-illumination-stress time,” Applied Physics Letters, vol. 101, no. 11, 113504-1-113504-4,2012.
    [147] M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, “Surface characterization of transparent conductive oxide Al-doped ZnO films,” Journal of Crystal Growth, vol. 220, no. 3, pp. 254-262, 2000.
    [148] S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films, vol. 435, pp. 78-82, 2003.
    [149] J. H. Lee, C.-Y. Chou, Z. Bi, C.-F. Tsai, and H. Wang, “Growth-controlled surface roughness in Al-doped ZnO as transparent conducting oxide,” Nanotechnology, vol. 20, no. 39, pp. 395704, 2009.
    [150] Y. C. Chen, Y. D. Juang, S. Y. Chu, and P. C. Kao, “Investigation of time-dependent UV-ozone treatment on an ultra-thin AgF buffer layer for organic light-emitting diodes,” Journal of the Electrochemical Society, vol. 159, no. 4, pp. H388-H392, 2012.
    [151] J. L. Wu, H. Y. Lin, Y. C. Chen, S. Y. Chu, C. C. Chang, C. J. Wu, and Y. D. Juang, “Effects of ZnO buffer layer on characteristics of ZnO:Ga films grown on flexible substrates: investigation of surface energy, electrical, optical, and structural properties,” ECS Journal of Solid State Science and Technology, vol. 2, no. 4, pp. P115-P119, 2013.
    [152] Y. C. Cho, S.-Y. Cha, J. M. Shin, J. H. Park, S. E. Park, C. R. Cho, S. Park, H. K. Pak, S.-Y. Jeong, and A.-R. Lim, “The conversion of wettability in transparent conducting Al-doped ZnO thin film,” Solid State Communications, vol. 149, no. 15-16, pp. 609-611, 2009.
    [153] J. Yang, J. K. Park, S. Kim, W. Choi, S. Lee, and H. Kim, “Atomic-layer-deposited ZnO thin-film transistors with various gate dielectrics,” Physica Status Solidi (A) Applications and Materials Science, vol. 209, no. 10, pp. 2087-2090, 2012.
    [154] K.-H. Choi, Y.-Y. Choi, J.-A. Jeong, H.-K. Kim, and S. Jeon, “Highly transparent and conductive Al-Doped ZnO/Ag/Al-Doped ZnO multilayer source/drain electrodes for transparent oxide thin film transistors,” Electrochemical and Solid-State Letters, vol. 14, no. 4, pp. H152, 2011.
    [155] K. H. Choi, H. W. Koo, T. W. Kim, and H. K. Kim, “Antireflective ZnSnO/Ag bilayer-based transparent source and drain electrodes for transparent thin film transistors,” Applied Physics Letters, vol. 100, no. 26, 263505-1-263505-5, 2012.
    [156] F. Zhou, H. P. Lin, L. Zhang, J. Li, X. W. Zhang, D. B. Yu, X. Y. Jiang, and Z. L. Zhang, “Top-gate amorphous IGZO thin-film transistors with a SiO buffer layer inserted between active channel layer and gate insulator,” Current Applied Physics, vol. 12, no. 1, pp. 228-232, 2012.
    [157] C.-Y. Hsu, and C.-H. Tsang, “Effects of ZnO buffer layer on the optoelectronic performances of GZO films,” Solar Energy Materials and Solar Cells, vol. 92, no. 5, pp. 530-536, 2008.
    [158] J. i. Nomoto, J. i. Oda, T. Miyata, and T. Minami, “Effect of inserting a buffer layer on the characteristics of transparent conducting impurity-doped ZnO thin films prepared by dc magnetron sputtering,” Thin Solid Films, vol. 519, no. 5, pp. 1587-1593, 2010.
    [159] S. W. Shin, G. L. Agawane, I. Y. Kim, Y. B. Kwon, I. O. Jung, M. G. Gang, A. V. Moholkar, J.-H. Moon, J. H. Kim, and J. Y. Lee, “Low temperature epitaxial growth and characterization of Ga-doped ZnO thin films on Al2O3 (0001) substrates prepared with different buffer layers,” Applied Surface Science, vol. 258, no. 12, pp. 5073-5079, 2012.
    [160] R. Navamathavan, R. Nirmala, and C. R. Lee, “Effect of NH3 plasma treatment on the device performance of ZnO based thin film transistors,” Vacuum, vol. 85, no. 9, pp. 904-907, 2011.
    [161] J. S. Meena, M. C. Chu, Y. C. Chang, H. C. You, R. Singh, P. T. Liu, H. P. D. Shieh, F. C. Chang, and F. H. Ko, “Effect of oxygen plasma on the surface states of ZnO films used to produce thin-film transistors on soft plastic sheets,” Journal of Materials Chemistry C, vol. 1, no. 40, pp. 6613-6622, 2013.
    [162] K. Remashan, Y.-S. Choi, S.-K. Kang, J.-W. Bae, G.-Y. Yeom, S.-J. Park, and J.-H. Jang, “Enhancement-mode metal organic chemical vapor deposition-grown ZnO thin-film transistors on glass substrates using N2O plasma treatment,” Japanese Journal of Applied Physics, vol. 49, no. 4 PART 2, 04DF20,2010.
    [163] H. Faber, J. Hirschmann, M. Klaumunzer, B. Braunschweig, W. Peukert, and M. Halik, “Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors,” ACS Applied Materials and Interfaces, vol. 4, no. 3, pp. 1693-1696, 2012.
    [164] M. C. Chu, J. S. Meena, P. T. Liu, H. P. D. Shieh, H. C. You, Y. W. Tu, F. C. Chang, and F. H. Ko, “Oxygen plasma functioning of charge carrier density in zinc oxide thin-film transistors,” Applied Physics Express, vol. 6, no. 7, 076501, 2013.
    [165] K. H. Choi, S. Jeon, and H. K. Kim, “A comparison of Ga:ZnO and Ga:ZnO/Ag/Ga:ZnO source/drain electrodes for In-Ga-Zn-O thin film transistors,” Materials Research Bulletin, vol. 6, pp. 2915-2918, 2012.
    [166] S. I. Kim, J. S. Park, C. J. Kim, J. C. Park, I. Song, and Y. S. Park, “High reliable and manufacturable gallium indium zinc oxide thin-film transistors using the double layers as an active layer,” Journal of the Electrochemical Society, vol. 156, no. 3, pp. H184-H187, 2009.
    [167] J. C. Park, and H. N. Lee, “Improvement of the performance and stability of oxide semiconductor thin-film transistors using double-stacked active layers,” IEEE Electron Device Letters, vol. 33, no. 6, pp. 818-820, 2012.
    [168] H. Y. Jung, Y. Kang, A. Y. Hwang, C. K. Lee, S. Han, D. H. Kim, J. U. Bae, W.-S. Shin, and J. K. Jeong, “Origin of the improved mobility and photo-bias stability in a double-channel metal oxide transistor,” Scientific reports, vol. 4, in press, 2014.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE