| 研究生: |
吳孟儒 Wu, Meng-Ru |
|---|---|
| 論文名稱: |
超穎材料光子結構電磁與光學性質之研究 Studies of Electromagnetic and Optical Properties in Some Metamaterial-Based Photonic Structures |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 共同指導教授: |
吳謙讓
Wu, Chien-Jang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 鐵電材料 、半導體 、超穎材料 、負折射 、單負材料 、表面阻抗 、光子能隙 、負折射係數 、光子晶體 、縱向電漿子-電磁偏極子 、負折射角 |
| 外文關鍵詞: | ferroelectric, semiconductor, metamaterial, negative refraction, single-negative material, surface impedance, photonic band gap, negative refractive index, photonic crystal, longitudinal plasmon polariton, negative refractive angle |
| 相關次數: | 點閱:223 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對鐵電材料鉭酸鋰、氧化鋅鋁與氧化鋅所組成的半導體超穎材料及介電材料與單負材料界面間之負折射作理論性的研究。
首先,我們探討鐵電材料鉭酸鋰之遠紅外光波特性,針對三種模型結構作表面阻抗計算分析,第一種模型結構為半無窮塊材,第二種模型結構為板材,第二種模型結構則為於介電機板上沉積薄膜之層狀結構。
此外,我們也針對在負折射率區域含有鉭酸鋰之電磁偏極化光子晶體作光子能隙結構之理論性討論,此區域包含一窄頻之不規則散射,及一寬頻之規則散射,結果顯示此電磁偏極化光子晶體含有多樣性之光子能隙結構,即一位於不規則散射區域之能階及其他位於規則散射區域之能階
接著,我們探討一維半導體超穎材料光子晶體之近紅外光光子能帶,探討的光子結構為(AB)N,N為堆疊的數目,A為一介電質,而B為一氧化鋅鋁與氧化鋅所組成之半導體超穎材料,在橫向磁波斜向入射的條件下,由於半導體超穎材料的非等向性介電常數,存在著多個縱向電漿子-電磁偏極子能隙,此種能隙歸因於光子與超穎材料塊材電漿子之間的耦合效應。
我們也針對一含有半導體超穎材料缺陷的缺陷光子晶體作缺陷模態特性的分析,分析的結構為(LH)N/DP/(LH)N,N和P分別為堆疊的數目,L為二氧化矽,H為磷化銦,而缺陷層D為一氧化鋅鋁與氧化鋅所組成之半導體超穎材料。
最後,我們針對介電材料與單負材料界面間之負折射特性作理論性的探討,探討的單負材料的種類分別為負介電常數材料及負導磁係數材料,負折射現象可以藉由運用異質波理論計算負折射角度而得知。
This dissertation is theoretically devoted to the studies of photonic properties in the ferroelectric material, Lithium Tantalate (LiTaO3), semiconductor metamaterial composed of Al-doped ZnO (AZO) and ZnO , and negative refraction in an interface between a dielectric and a single-negative (SNG) material.
First, we investigate the far-infrared (FIR) wave properties for a ferroelectric material, Lithium Tantalate (LiTaO3). The analysis has been done based on the calculated surface impedances for three model structures, i.e., material occupying semi-infinite space (structure I), material of a slab immersed in free space (structure II), and a layered structure made of film on a dielectric substrate (structure III).
Besides, photonic band gap (PBG) structure for a polaritonic photonic crystal (PPC) containing Lithium Tantalate (LiTaO3) in negative refractive index (NRI) region has also been theoretically investigated. This region consists of a narrow frequency range of anomalous dispersion and a wide range of normal dispersion. The result shows that such PPC has a multiple-PBG structure with one gap locating in the anomalous dispersion region and others in the normal dispersion region.
Next, we theoretically investigate the near-infrared (NIR) photonic band structure (PBS) in a one-dimensional semiconductor metamaterial (MM) photonic crystal (PC). The considered PC is (AB)N, where N is the stack number, A is a dielectric, and B is a semiconductor MM composed of Al-doped ZnO (AZO) and ZnO. For oblique incidence under transverse magnetic mode, it is found that, due to the anisotropic permittivity of semiconductor metamaterial, there exist multiple longitudinal plasmon polariton gaps which are ascribed to the coupling between photon mode and metamaterial bulk electric plasmon.
The properties of defect modes in a defective photonic crystal containing a semiconductor metamaterial defect are also elucidated. We consider the structure, (LH)N/DP/(LH)N, where N and P are respectively the stack numbers, L is SiO2, H is InP, and defect layer D is a semiconductor metamaterial composed of Al-doped ZnO (AZO) and ZnO.
Finally, we theoretically investigate the properties of negative refraction in an interface between a dielectric and a single-negative (SNG) material. The kinds of SNG materials, epsilon-negative (ENG) and mu-negative (MNG), will be considered, respectively. The phenomenon of negative refraction (NR) can be seen due to the presence of negative refractive angle calculated by making use of the inhomogeneous wave theory.
References in chapter 1
[1]J. D. Jackson, Classical Electrodynamics, Wiley, 1962.
[2]M. J. Lancaster, Passive Microwave Device Applications of High-Temperature Superconductors, University of Birmingham, 1997.
[3]C.-J. Wu, “Microwave response of a nearly ferroelectric superconductor,” J. Appl. Phys., vol. 100, pp. 063908-1-6, 2006.
[4]A. S. Vioktalamo, R. Watanabe, and T. Ishihara, “Permeability enhancement of stratified metal dielectric metamaterial in optical regime,” Photon. and Nanostruc. – Fundament. and Appl., vol. 10, pp. 325-328, 2012.
[5]A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and Vladimir M. Shalaev, “Negative refractive index in optics of metal–dielectric composites,” J. Opt. Soc. B, vol. 23, pp. 423-433, 2006.
[6]V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi, vol. 10, pp. 509-514, 1968.
[7]W.-H. Lin, C.-J. Wu, T.-J. Yang, and S. J. Chang, “Analysis of dependence of resonant tunneling on static positive parameters in a single-negative bilayer,” Prog. Electromagn. Res., vol. 118, pp. 151-165, 2011.
[8]A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Anten. Propag., vol. 51, pp. 2558-2571, 2003.
[9]E. A. Nelin, “Impedance characteristics of crystal-like structures,” Tech. Phys., vol. 54, pp. 953-957, 2009.
[10]C. A. A. Araujo, M. S. Vasconcelos, P. W. Mauriz, and E. L. Albuquerque, “Omnidirectional band gaps in quasiperiodic photonic crystals in the THz region,” Opt. Mater., vol. 35, pp. 18-24, 2012.
[11]J. Manzanares-Martinez and F. Ramos-Mendieta, “One-dimensional photonic crystal with semiconducting constituents:the effects of the absorption mechanisms,” Rev. Mex. Phys., vol. S54, pp. 95-100, 2008.
[12]V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter, vol. 17, pp. 3717-3734, 2005.
[13]E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
[14]S. John, “Strong localization of photons in certain disordered lattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, 1987.
[15]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
[16]S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa).
[17]H. Contopanagos, E. Yablonovitch, and N. G. Alexopoulos, “Electromagnetic properties of periodic multilayers of ultrathin metallic films from dc to ultraviolet frequencies,” J. Opt. Soc. Am. A, vol. 16, pp. 2294-2306 ,1999.
[18]C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B, vol. 61, pp. 5920-5926 ,2000.
[19]C.-J. Wu, C.-L. Liu, and T.-J. Yang “Investigation of photonic band structure in a one-dimensional superconducting photonic crystal,” J. Opt. Soc. Am. B, vol. 26, pp. 2089-2094, 2009.
[20]J. Manzanares-Martinez and F. Ramos-Mendieta, “One-dimensional photonic crystal with semiconducting constituents:the effects of the absorption mechanisms,” Rev. Mex. Phys. S, vol. 54, pp. 95-100, 2008.
[21]L. E. Gonzalez and N. Porras-Montenegro, “Pressure, temperature and plasma frequency effects on the band structure of a 1D semiconductor photonic crystal,” Physica E, vol. 44, pp. 773-777, 2012.
[22]T.-C. King, C.-C. Wang, W.-K. Kuo, and C.-J. Wu, “Analysis of effective plasma frequency in a magnetized extrinsic photonic crystal,” IEEE Photon. J., vol. 5, 2700706 , 2013.
[23]H.-C. Hung, C.-J. Wu, T.-J. Yang, and S.-J. Chang, “Magneto-optical effect in wave properties for a semiconductor photonic crystal at near-infrared,” IEEE Photon. J., vol. 4, pp. 903-911, 2012.
[24]H. Tian and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Opt. Com., vol. 252, pp. 321-328, 2005.
[25]A. S. Sanchez and P. Halevi, “Simulation of tuning of one-dimensional photonic crystals in the presence of free electrons and holes,” J. Appl. Phys., vol. 94, pp. 797-799, 2003.
[26]V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of and ,” Sov. Phys. Uspekhi, vol. 10, pp. 509-514, 1968.
[27]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187, 2000.
[28]J. B. Pendry, “Negative refraction makes a perfect len,” Phys. Rev. Lett., vol. 85, pp. 3966-3969, 2000.
[29]J. Li, L. Zhou, C.T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett., vol. 90, 083901, 2003.
[30]G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci., vol. 109, pp. 8834-8838, 2012.
[31]T. Tang, “Photonic band gap in a one-dimensional periodic structure with semiconductor metamaterial in the near infrared”, Optik, vol. 124, pp. 6657-6660, 2013.
[32]E. Reyes-Gómez, D. Mogilevtsev, S. B. Cavalcanti, C. A. A. de Carvalho, and L. E. Oliveira, “Plasmon polaritons in photonic superlattices containing a left-handed material,” Europhys. Lett. vol. 88, pp. 24002 (1-6), 2009.
[33]R. A. Depine, M. L. Martínez-Ricci, J. A. Monsoriu, E. Silvestre c, P. Andrés, “Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals,” Phys. Lett. A, vol. 364, pp. 352-355, 2007.
[34]C.-J. Wu, C.-L. Liu, and T.-J. Yang, “Investigation of photonic band structure in a one-dimensional superconducting photonic crystal,” J. Opt. Soc. Am. B, vol. 26, pp. 2089-2094, 2009.
[35]C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B, vol. 61, 5920-5926, 2000.
[36]E. Reyes-Gómez, S. B. Cavalcanti, C. A. A. de Carvalho, and L. E. Oliveira, “Bulk-plasmon polaritons in metamaterial-metamaterial one-dimensional photonic superlattices,” Superlatt. Microstruc., vol. 54, pp. 96-106, 2013.
[37]M.-S. Chen, C.-J. Wu, T.-J. Yang, A. Y.-G. Fuh, “Wave properties of Fibonacci-sequence photonic crystals containing single-negative materials,” Solid State Comm., vol. 168, pp. 42-51, 2013.
[38]G. J. Schneider, G. H. Watson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett., vol. 83, pp. 5350-5352, 2003.
[39]J. A. Mansouriu, C. J. Zapata-Rodriguez, E. Silvestre, W. D. Furlan, “Cantor-like fractal photonic crystal waveguides,” Opt. Commun., vol. 252, pp. 46-51, 2005.
[40]D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, P. M. Platzman, “Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B, vol. 10, pp. 314-321, 1993.
[41]Y. J. Xiang, X. Y. Dai, S. C. Wen, “Effects of negative index medium defect layers on the transmission properties of one-dimensional photonic crystal,” Optoelectron. Lett., vol. 3, pp. 144-147, 2007.
[42]C. Xu, D. Han, X. Wang, X. Liu, J. Zi, “Extrinsic photonic crystals: Photonic band structure calculations of a doped semiconductor under a magnetic field,” Appl Phys. Lett., vol. 90, pp. 061112-1~06112-3, 2007.
[43]C.-J. Wu, J.-J. Liao, T.-W. Chang, “Tunable Multilayer Fabry-Perot Resonator Using Electro-Optical Defect Layer,” J. Electromagn. Waves Appl., Vol. 24, pp. 531-542, 2010.
[44]J.-W. Liu, T.-W. Chang, C.-J. Wu, “Filtering Properties of Photonic Crystal Dual-Channel Tunable lter Containing Superconducting Defects,” J. Supercond. Novel Magn., vol. 27, pp. 67-72, 20i4.
[45]T. Tang, “Photonic band gap in a one-dimensional periodic structure with semiconductor metamaterial in the near infrared,” Optik, vol. 124, pp. 6657-6660, 2013.
[46]C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Singapore, 2004.
[47]R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of negative index of refraction,” Science, vol. 292, pp. 77–79, 2001.
[48]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter, vol. 10, pp. 4758-4809, 1998.
[49]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2075-2084, 1999.
[50]J.L. Garcia-Pomar and M. Nieto-Vesperinas, “Transmission study of prisms and slabs of lossy negative index media,” Opt. Express, vol. 12 pp. 2081–2095, 2004.
[51]H.J. Lezec, J.A. Dionne, and H.A. Atwater, “Negative refraction at visible frequencies,” Science, vol. 316, pp. 430–432, 2007.
[52]M. Wegener, G. Dolling, and S. Linden, “Backward waves moving forward,” Nat. Mater., vol. 6, pp. 475–476, 2007.
[53]W. Gu, Y.-H. Wu, Y.-R. Chen, Z.-H. Dai, W.-X. Zhou, Y.-X. Zheng, and L.-Y. Chen, “Study on the properties of light propagation at the metal interface,” J. Infrared Millimeter Waves, vol. 28, pp. 31–34, 2009.
[54]F. Zhang, S. M. Feng, and Y. H. Shan, “Research of negative refraction direction on P-light in metal,” Optik, vol. 125, pp. 338–340, 2014.
[55]V. Yu. Fedorov and T. Nakajima, “Negative refraction of inhomogeneous waves in lossy isotropic matamaterials,” arXiv: 1305.6393v3, pp. 1–17, 2013.
[56]D.-W. Yeh and C.-J. Wu, “Analysis of photonic band structure in one-dimensional photonic crystal containing single-negative materials,” Opt. Express, vol. 17, pp. 16666–16680, 2009.
[57]H.-T. Hsu, K.-C. Ting, T.-J. Yang, and C.-J. Wu, “Investigation of photonic band gap in a one-dimensional lossy DNG/DPS photonic crystal,” Solid State Commun., vol. 150, pp.644–647, 2010.
[58]A. Alu and N. Engheta, “Pairing an epsilon-negatie slab with a mu-negatie slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag., vol. 51, pp. 2558–2571, 2003.
[59]L. Dong, G. Du, H. Jiang, H. Chen, and Y. Shi, “Transmission properties of lossy single-negative materials,” J. Opt. Soc. Amer. B, vol. 26, pp. 1091–1096, 2009.
References in chapter 2
[1]S. Kinoshita, S. Yoshioka, “Structural colors in nature: The role of regularity and irregularity in the structure,” ChemPhysChem, vol. 6, pp. 1442–1459, 2005
[2]P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 6.
[3]M. G. Cottom, and D. R. Trilly, Introduction to Surface and Superlattice Excitations (University Press, Cambridge, 1989).
References in chapter 3
[1]J. Manzanares-Martinez and F. Ramos-Mendieta, “One-dimensional photonic crystal with semiconducting constituents:the effects of the absorption mechanisms,” Rev. Mex. Phys., vol. S54, pp. 95-100, 2008.
[2]K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett., vol. 85, pp. 543-545, 2004.
[3]C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc, NJ, 2005.
[4]C. A. A. Araujo, M. S. Vasconcelos, P. W. Mauriz, and E. L. Albuquerque, “Omnidirectional band gaps in quasiperiodic photonic crystals in the THz region,” Opt. Mater., vol. 35, pp. 18-24, 2012.
[5]H. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett., vol. 82, pp. 3820-3822, 2013.
[6]V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter, vol. 17, pp. 3717-3734, 2005.
[7]D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science, vol. 305, pp. 788-792, 2004.
[8]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Micr. Theory Tech., vol. 47, pp. 2075-2084, 1999.
[9]S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Conden. Mat., vol. 14, pp. 6383-6394, 2002.
[10]P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, New York, 1998.
[11]C.-J. Wu, “Microwave response of a nearly ferroelectric superconductor,” J. Appl. Phys., vol. 100, pp. 063908-1-6, 2006.
[12]V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Stat. Sol. (RRL), vol. 1, pp. 208-210, 2007.
[13]V. Yannopapas, “Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: a theoretical study,” J. Phys.: Condens. Matter, vol. 20, pp. 255201-1-8, 2008.
[14]Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B, vol. 71, pp. 245105-1-22, 2005.
[15]V. Yannopapas, “Non-local optical response of two-dimensional arrays of metallic nanoparticles,” J. Phys.: Condens. Matter, vol. 20, pp. 325211-1-5, 2008.
References in chapter 4
[1]P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1998).
[2]C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc, NJ, 2005).
[3]H. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Beam shaping by a periodic structure with negative refraction”, Appl. Phys. Lett. 82, 3820-3822 (2013).
[4]C. A. A. Araujo, M. S. Vasconcelos, P. W. Mauriz, and E. L. Albuquerque, “Omnidirectional band gaps in quasiperiodic photonic crystals in the THz region,” Opt. Mater. 35, 18-24 (2012).
[5]V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717-3734 (2005).
[6]D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[7]J. Li, L. Zhou, C.T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[8]P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Hand Materials (Princeton University Press, New Jersey, 2008).
References in chapter 5
[1]T. Tang, “Photonic band gap in a one-dimensional periodic structure with semiconductor metamaterial in the near infrared”, Optik, vol. 124, pp. 6657-6660, 2013.
[2]P. Yeh, Optical Waves in Layered Media (Singapore, Wiley, 1991).
[3]T.-W. Chang, J.-J. Wu, and C.-J. Wu, “Complex photonic band structure in a photonic crystal containing lossy semiconductor InSb,” Prog. Electromagn. Res., vol. 131, pp. 153-167, 2012.
[4]I. Ilič, P. P. Beličev, V. Milanovič, and J. Radovanovič, “Analysis of tunneling times in absorptive and dispersive media,” J. Opt. Soc. Am. B, vol. 25, pp. 1800-1804, 2008.
[5]P. P. Beličev, I. Ilič, V. Milanovič, J. Radovanovič, and L. Hadzievski “Tunneling times in metamaterials with saturable nonlinearity,” Phys. Rev. A, vol. 80, 023821, 2009.
[6]J. Radovanovič, V. Milanovic, Z. Ikonič, D. Indjin, V. Milanovič, and P. Harrison, “Optimal design of GaN-AlGaN Bragg-confined structures for intersubband absorption in the near-infrared spectral range,” IEEE J. Quantum Electron., vol. 39, pp. 1297-1304, 2003.
References in chapter 6
[1]T. Tang, “Photonic band gap in a one-dimensional periodic structure with semiconductor metamaterial in the near infrared”, Optik, vol. 124, pp. 6657-6660, 2013.
[2]P. Yeh, Optical Waves in Layered Media, Singapore, Wiley, 1991.
[3]E. Reyes-Gómez, S. B. Cavalcanti, C. A. A. de Carvalho, and L. E. Oliveira, “Bulk-plasmon polaritons in metamaterial-metamaterial one-dimensional photonic superlattices,” Superlatt. Microstruc., vol. 54, pp. 96-106, 2013.
[4]R. A. Depine, M. L. Martínez-Ricci, J. A. Monsoriu, E. Silvestre c, P. Andrés, “Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals,” Phys. Lett. A, vol. 364, pp. 352-355, 2007.
[5]M.-S. Chen, C.-J. Wu, T.-J. Yang, A. Y.-G. Fuh, “Wave properties of Fibonacci-sequence photonic crystals containing single-negative materials” Solid State Comm., vol. 168, pp. 42-51, 2013.
References in chapter 7
[1]T. Tang, “Photonic band gap in a one-dimensional periodic structure with semiconductor metamaterial in the near infrared,” Optik, vol. 124, pp. 6657-6660, 2013.
[2]S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/∼orfanidi/ewa.
[3]T. Chunhua, F. Guanghan, Z. Tianming, I. Shuti, S. Huiqing, “Preparation of InP–SiO2 3D photonic crystals,” Physica B, vol. 363, pp. 1-6, 2005.
[4]C.-C. Liu, C.-J. Wu, “Near infrared filtering properties in photonic crystal containing extrinsic and dispersive semiconductor defect,” Prog. Electromagn. Res., vol . 137, pp. 359-370, 2013.
References in chapter 8
[1]V. Yu. Fedorov and T. Nakajima, “Negative refraction of inhomogeneous waves in lossy isotropic matamaterials,” arXiv: 1305.6393v3, pp. 1–17, 2013.
[2]F. Zhang, S. M. Feng, and Y. H. Shan, “Research of negative refraction direction on P-light in metal,” Optik, vol. 125, pp. 338–340, 2014.
[3]L. Dong, G. Du, H. Jiang, H. Chen, and Y. Shi, “Transmission properties of lossy single-negative materials,” J. Opt. Soc. Amer. B, vol. 26, pp. 1091–1096, 2009.