| 研究生: |
江佩蓉 Chiang, Pei-Rong |
|---|---|
| 論文名稱: |
使用分群演算法與類神經網路辨別電力電纜局部放電信號 Identification of Partial Discharge Signal in XLPE Cables Using K-means Method and Neural Network |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 電力電纜 、局部放電 、分群演算法 、類神經網路 |
| 外文關鍵詞: | Partial discharge, K-means method, Neural network, Power cable |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電力電纜劣化的原因包括廠內製造瑕疵、現場施工瑕疵、或老化等,若是放電能量超過該導線之絕緣材料之耐受程度時,電力電纜絕緣將會崩潰,而造成局部放電,一旦局部放電發生,將危害電力電纜而造成重大損害。本文主要是利用高頻感測器(HFCT)量測單芯XLPE電力電纜局部放電訊號,將瑕疵的電氣訊號其原始波形,使用小波濾雜訊法(Wavelet de-noising)濾除環境雜訊而萃取其脈衝特徵值繪製成圖譜後,蒐集不同種瑕疵的資料,分別使用分群演算法(k-means)及倒傳遞類神經網路兩種方法來辨別不同種瑕疵之間的關係,瑕疵實驗主要是針對常見的電纜瑕疵進行模擬分析與辨識,驗證本論文所提出的方法與實驗結果的一致性。
In this thesis, we aim to develop a system to recognize partial discharge (PD) signal patterns in XLPE power cables. The PD signals are detected by high-frequency current transformer (HFCT) sensors and the PD patterns can be extracted from the raw data with wavelet de-noising method. To identify the PD patterns, the K-means algorithm is presented to distinguish different kinds of faults in power cables. Moreover, the features of 3D patterns extracted from PD patterns can be identified by back propagation neural networks (BPN). On the basis of these results, the system can provide inspection personnel a powerful tool to determine possible PD fault types and maintain related equipment.
[1] 台灣電力股份有限公司,「輸入電級地下電纜線路部分放電遠端診斷系統之開發」,2014。
[2] Y. Zhou, Y. Qin and C. Leach, "Cost-Effective online Partial Discharge Measurements for Electrical Machines: Preventing Insulation Failure," IEEE Electrical Insulation Magazine, vol. 26, pp. 23-29, 2010.
[3] 陳宗寶,「應用音射法於電力電纜之局部放電研究」,國立成功大學電機工程系碩士論文,2010。
[4] 吳廣寧,「大型發電機故障放電在線監測及診斷技術」,西南交通大學出版社,2001。
[5] J. C. Hsieh, C. C. Tai, C. C. Su, C. Y. Chen and T. C. Huang, "Evaluation and Comparison of Power Cable Insulation Defect Detection Methods," Journal of Advanced Engineering, vol. 2, No. 4, pp. 233-237, 2007.
[6] 林美妍,「基於經驗模態分解的局部放電信號小波分析」,國立成功大學電機工程系碩士論文,2011。
[7] 魏伶芷,「旋轉電機瑕疵信號音射量測與分析」,國立成功大學電機工程系碩士論文,2014。
[8] X. Zhou, C. Zhou and I. J. Kemp, "An Improved Methodology for Application of Wavelet Transform to Partial Discharge Measurement," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12, No. 3, 2005.
[9] N. C. Sahoo, M. M. A. Salam and R. Bartnikas, "Trends in Partial Discharge Pattern Classification: A Survey," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12, No. 2, pp.248-264, 2005.
[10] Y. H. Lin, "Using K-Means Clustering and Parameter Weighting for Partial-Discharge Noise Suppression," IEEE transactions on power delivery, vol. 26, 2011.
[11] 台灣電力股份有限公司,「區處設計手冊地下配電線路設計-電纜接頭」,2000。
[12] 鄭凱中,「電力電纜局部放電檢測與圖譜辨識之研究」,國立成功大學電機工程學系碩士論文,2008。
[13] 王瑋民,林于正,「超高壓電纜終端應力錐電場分析」,中華民國第三十一屆電力工程研討會,2010。
[14] IIEC International Standard 60270. "High Voltage Test Techniques-Partial Discharge Measurements," Int’l. Electrotechnical Commission (IEC), Geneva, Switzerland, 3rd edition, 2000.
[15] N. H. Ahmed and N. N. Srinivas, "On-Line Partial Discharge Detection in Cable," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, No. 2, pp.181-188, 1998.
[16] Y. Tian, P. L. Lewin, A. E. Davies, S. G. Swingler, S. J. Sutton and G. M. Hathaway, "Comparison of On-line Partial Discharge Detection Methods for HV Cable Joints," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, No. 4, pp.604-615, 2002.
[17] A. Krivda, "Automated Recognition of Partial Discharges," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, No. 5, pp. 796-821, 1995.
[18] Working Group 21.03 Cigre, "Recognition of Discharges," Electra, vol. 11, pp. 61-98, 1969.
[19] 鄭美滿,「實驗性比壓器局部放電圖譜之辨識」,國立台灣科技大學電機工程系碩士論文,2005。
[20] X. Peng, C. Zhou and D. M. Hepburn, "Application of K-Means Method to Pattern Recognition in On-line Cable Partial Discharge Monitoring," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, No. 3, 2013.
[21] L. Han, M. Kamber and J. Pei, "Data Mining: Concepts and Techniques," Morgan Kaufmann, 2011.
[22] J. B. MacQueen, "Some Methods for Classification and Analysis of Multivariate Observations," Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297, 1967.
[23] L. Kaufman and P. J. Rousseeuw, "Finding Groups in Data: an Introduction to Cluster Analysis," John Wiley & Sons, 2005.
[24] J. A. Hartigan and M. A. Wong, "A K-Means Clustering Algorithm," J. Royal Statistical Soc., Series C (Applied Statistics), vol. 28, pp. 100-108, 1979.
[25] N. Shi, X. M. Liu and Y. Guan, "Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm," 3rd Int’l. Sympos. Intelligent Information Technology and Security Informatics (IITSI), pp.63-67, 2010
[26] P. S. Bradley and U. M. Fayyad, "Refining Initial Points for K-Means Clustering," 15th Int’l. Conf. Machine Learning (ICML), Morgan Kaufmann, San Francisco, USA, 1998.
[27] 張斐章、張麗秋,「類神經網路」,東華書局,2007。
[28] 羅華強,「類神經網路-MATLAB 的應用」,高立圖書,2008。
[29] H. C. Chen, F. C. Gu and C. Y. Lee, " A New Method Based on Extension Theory for Partial
Discharge Pattern Recognition," WSEAS Transactions on Systems, vol. 7, 2008.
[30] 許晉維,「應用類神經網路於比流器局部放電圖譜之辨識」,國立台灣科技大學電機工程
系碩士論文,2003。
[31] 鄒明璋,「變壓器局部放電檢測與圖譜辨識」,聖約翰科技大學電機工程系碩士論文,2006。
[32] 古鋒昌,「XLPE電力電纜局部放電量測與瑕疵模式辨識」,國立勤益科技大學電機工程系碩士論文,2009。