簡易檢索 / 詳目顯示

研究生: 蕭朝光
Hsiao, Chao-Kuang
論文名稱: 向陽絹雲母粒徑縮減及晶格離子置換研究
指導教授: 雷大同
Ray, Da-Tung
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 89
中文關鍵詞: 離子置換粒徑縮減絹雲母
外文關鍵詞: sericite, size reduction, ion substitution
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台東縣向陽地區蘊藏豐富的絹雲母礦,可採礦量約為1500萬噸,品位約為50%,目前年產量有3萬噸左右,是台灣地區最具經濟價值之工業礦物原料之一。絹雲母為片狀矽酸鹽礦物,在傳統工業上,絹雲母以優異的抗紫外線、除靜電、耐熱、絕緣、化學安定等性質,領先其他材料,可應用於電絕緣板、防火材料、油漆、及塑膠填充料等方面,目前向陽絹雲母尚未有較高單價的應用。
    絹雲母之結晶構造與化學成份均與白雲母[KAl2(AlSi3)O10(OH)2]相似,僅其粒徑較白雲母細。絹雲母的單位晶室之c軸長為20Å,屬奈米範圍,有可能成為一維奈米材料的候選者。但是向陽絹雲母有三個問題須先妥予解決,其奈米特性方有可能充分利用:首先為絹雲母之天然粒徑仍大,必須將其粒徑縮減至相當細的程度;其次為絹雲母的層間電荷高,剝層處理有困難,須將層間電荷降低,以利後續之插層工作;最後為向陽雲母礦之品位僅達百分之五十,另一半是葉蠟石,須先予以分離。若能將絹雲母粒徑中之一維縮減至奈米範圍,比表面積增大,其絕緣性、耐熱性、耐腐蝕、抗紫外線、除靜電、化學安定、良好的彈性等性質將可大幅發揮,可進一步提高絹雲母的經濟價值。
    本研究探討向陽絹雲母礦之研磨及其對粒徑縮減極限及結晶度之影響,並以水熱反應進行絹雲母層間一價陽離子之置換,以為後續離子交換、插層之研究奠定基礎條件。
    本研究首先以攪拌磨機研磨絹雲母樣品,結果顯示;攪拌研磨48 hr之樣品,已成非晶質,其等比表面積圓盤直徑可由絹雲母水洗礦之26.41μm縮減至0.12μm,依此直徑估算之絹雲母厚度為40 nm,為其單位晶室c軸長之二倍,繼續增加攪拌研磨時間至96 hr,其粒徑無繼續縮減之趨勢,顯示已達粒徑縮減之極限。其次將攪拌研磨12 hr之絹雲母與不同濃度鹽類溶液混合,在220℃及23 atm水熱條件下,進行層間一價陽離子之置換反應,結果發現經研磨處理已成為非晶質之絹雲母,經水熱處理後,一價陽離子有進入晶格重建絹雲母結構之效能,由X光繞射圖譜中觀察,重建效果的優劣順序為K+>NH4+>Na+>Li+。水熱反應溶液中若同時含有一價陽離子及Al3+,則K+置換量較僅有一價陽離子時大幅升高,且Al3+ 濃度愈高,K+ 離子置換量愈大,Na+ 對K+ 的置換性最佳,其次為NH4+ 、Li+。本研究最佳條件為添加5 M 一價陽離子及5 M Al3+,220℃反應2 hr,其K+ 置換量百分比依Na+、NH4+、Li+ 之順序為63.6 %、52.5 %及39.4 %。
    觀察絹雲母樣品中K+ 含量的減少及置換進入晶格的一價陽離子量的關係,發現Li+ 進入絹雲母中的量大約等於置換出之K+ 量,顯示Li + 置換絹雲母礦物中之K+,使其改質成某些層間為Li + 之鋰質雲母。Na+ 進入絹雲母中的量均超過置換出之K+ 量,顯示Na+ 不僅置換絹雲母中之K+,使其轉變為鈉雲母,並有可能將葉臘石轉換為鈉雲母,在5 M Na+,0.5 M Al3+,220℃,1 hr之水熱反應條件下,絹雲母及葉臘石轉換成鈉雲母之轉換率分別為41.1 % 及20.1 %。

    In Hsiang-Yang area of Taitung county, there is a huge amount of reservation of sericite deposite. The recoverable amount is estimated to be about 15 million tons with a grade of 50%. The annual production at present is about 30000 tons. It is one of the most economically important industrial minerals in Taiwan Province. Sericite is a layered silicate mineral. It has excellent properties in anti-ultraviolet, anti-static, heat resistance, electricity insulation, chemical stability, etc. It is already used in conventional industry, as filler in the manufacturing of electric insulating plate, fire-resistant material, paint and plastics. However, no high-valued application has been discovered until present.
    The crystalline structure and chemical composition of sericite is similar to muscovite [KAl2(AlSi3)O10(OH)2]. The thickness of the unit cell is about 20 Å, which falls in nanometer range, making sericite an ideal candidate of nano-material. However, three problems should be solved in order to utilize sericite’s nano-properties. The first is that the natural size of sericite is still large. Size must be reduced to relatively fine range. The second is that the interlayer charge of sericite is high, which makes the exfoliation of sericite difficult. The charge must be reduced. The last is that only 50% of the concentrate is sericite. The other half is pyrophyllite, which must be separated. If the size of sericite can be reduced to nanosize range and specific surface area increased, the properties of insulation, heat-resistance, erosion-resistance, anti -ultraviolet, anti-static, chemical stability and elasticity can all be fully developed. The economic value of sericite can be further increased.
    The objectives of this research are to investigate the size reduction limit and crystallinity change of grinding operation; to investigate the hydrothermal reaction conditions on interlayer atom substitution. The results can be used for the future cation exchange and intercalation of sericite.
    The grinding of sericite was performed using a stirrer-mill. The original sericite equivalent specific surface area disk diameter of sericite sample is 26.41 μm, after grinding for 48 hr, the size is reduced to 0.12μm. The estimated thichness form this diameter is 40 nm, which is about 2 times of lattice c-axis. Further lengthened grinding to 96 hours, seemed to have no effect on size reduction, a hint of reaching the grinding limit. Sericite samples which have been ground for 12 hr were mixed with different salt solutions. Hydrothermal reactions under 220℃ and 23 atmospheres were carried out to perform interlayer ion substitution experiment. The results showed that the sericite which is amorphous after grinding seems to recover its crystallinity by hydrothermal reaction. Form the observation of X-ray diffraction patterns, the reconstruct ion capability of valence-one ions decreases in the order K+, NH4+, Na+, Li+.
    The substitution of K+ will substantially be increased if hydrothermal solutions contain valence-one ions and Al3+ simultaneously. The K+/Na+ substitution was the highest, followed by K+/NH4+ and K+/Li+ substitution. The best condition in this resarch is with 5M valence -one ion and 5 M Al3+, under 220℃, 2 hr reaction time. The substitution of K+ by Na+, NH4+ and Li+ are 63.6%, 52.5% and 39.4% respectively. The decrease in K+ and increase in valence-one ions in sericite has been investigated. The amount of K+ substituted was almost equal to Li+ entering the lattice. It shows Li+ replaces the K+ of sericite and transformd it to Li-mica. On the other hand, the amount of Na+ entering the lattice was higner than the K+ substituted. It shows that Na+ not only transforms some sericite to paragonite (sodium mica) but also some pyrophyllite to paragonite. The transformation percentages of sericite and pyrophyllite are 41.1% and 20.1% respectively under the conditions of 5 M Na+, 5 M Al3+, 220℃ and 2 hr reaction.

    摘要 I Abstract III 表目錄 VIII 圖目錄 IX 誌 謝 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 第二章 基礎背景與前人研究 4 2.1 層狀矽酸鹽礦物構造 4 2.2 粒徑縮減 10 2.3 碎磨理論 12 2.4 層狀矽酸鹽礦物離子交換機制 14 2.5 離子交換選擇性 15 2.6前人研究 18 第三章 實驗材料與步驟 20 3.1 實 驗材料 20 3.1.1絹雲母 20 3.1.2 藥品 21 3.1.3 實驗設備 21 3.2 實驗步驟 25 3.2.1 粒徑縮減試驗 25 3.2.2 晶格離子置換實驗 25 3.3 性質分析 26 3.3.1 粒徑分析 26 3.3.2 BET法比表面積測定 26 3.3.3 X光繞射分析 26 3.3.4 掃描式電子顯微鏡(SEM) 26 3.3.5 原子吸收光譜儀分析 27 第四章 結果與討論 29 4.1 粒徑縮減試驗 29 4.1.1 礦漿濃度對粒徑縮減之影響 29 4.1.2 磨球粒徑對絹雲母粒徑縮減之影響 34 4.1.3 長時間研磨之粒徑縮減極限與層間離子含量變化 34 4.1.4 研磨理論之驗證 40 4.2 晶格離子置換試驗 43 4.2.1 溶液離子對絹雲母結構之影響 43 4.2.2 陽離子種類及濃度對絹雲母層間鉀離子置換之影響 62 4.2.3 一價陽離子對絹雲母及葉臘石相之影響 69 第五章 結論 74 第六章 未來研究建議 76 參考文獻 77 附錄A 安德利森瓶(Andreasen pipte)粒徑分佈量測步驟 80 附錄B 粒徑分佈數據 83 附錄C 水熱反應後,絹雲母水洗礦與攪磨後樣品 X光繞射圖譜 85 附錄D 水熱反應中各陽離子對絹雲母層間K+ 置換量 88 附錄E 水熱反應後,絹雲母之K+、Na+或Li+ 含量 89 表目錄 表2.1 層狀矽酸鹽分類 7 表2.2 25℃下陽離子離子半徑、水合半徑及水合熱 17 表3.1 向陽絹雲母礦化學組成 20 表3.2 化學試劑及其用途 21 表4.1 攪拌磨產物比表面積與等比表面圓盤直徑 36 表4.2 不同研磨條件所計算之單位質量之粒徑能量轉換常數 40 表4.2 添加不同陽離子,絹雲母層間K+ 置換量 68 圖目錄 圖2.1 層狀矽酸鹽礦物,矽氧四面體及鋁(鎂)氧八面體及其所組成之單層示意圖 5 圖2.2 高嶺石之結晶結構(1:1型、二八面型層狀矽酸鹽) 8 圖2.3 絹雲母之結晶結構(2:1型、二八面型層狀矽酸鹽) 9 圖2.4 磨球間有效研磨的空間 11 圖3.1 向陽絹雲母水洗礦之粒徑分佈 22 圖3.2向陽絹雲母水洗礦之X光繞射分析 23 圖3.3 絹雲母水洗礦之ζ電位與pH值變化 24 圖3.1 本研究實驗流程 28 圖4.1 絹雲母礦漿濃度5 %、10 %、15 %、20 %,以攪拌磨機研磨 3 hr後之粒徑分佈。 30 圖4.2 絹雲母礦漿濃度5 %、10 %、15 %、20 %,以攪拌磨機研磨 6 hr後之粒徑分佈 31 圖4.3 絹雲母礦漿濃度5 %、10 %、15 %、20 %,以攪拌磨機研磨12 h後之粒徑分佈 32 圖4.4 絹雲母礦漿濃度5 %、10 %,以攪拌磨機研磨18 hr後之粒徑分佈 33 圖4.5 不同濃度攪拌研磨產物之等比表面積圓盤直徑與研磨時間之關係 37 圖4.6 絹雲母水洗礦及攪拌研磨3、6、12、18hr後之SEM照片 38 圖4.7 磨球大小與研磨產物等比表面積圓盤直徑關係 39 圖4.8 絹雲母水洗礦與攪拌研磨3、6、12、18、48、96 hr後, 41 樣品之X光繞射圖譜。 41 圖4.9 絹雲母層間鉀離子量與攪拌研磨時間關係 (礦漿濃度5%) 42 圖4.10絹雲母水洗礦與攪拌研磨6、12、18hr樣品水熱處理後 44 X光繞射圖譜(純水,220℃,0.5 hr) 44 圖4.11絹雲母水洗礦與攪拌研磨6、12、18 hr樣品水熱處理後X光繞射圖譜(0.5M Na+,0.5M Al3+ ,220℃,0.5 hr) 45 圖4.12絹雲母水洗樣與攪拌研磨6、12、18 hr樣品水熱處理後X光繞射圖譜(0.5NaCl,0.5AlCl3 ,220℃,1小時) 46 圖4.13 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(Li+,Al3+,220℃,0.5 hr) 48 圖4.14 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(Li+,Al3+,220℃,1 hr) 49 圖4.15 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(Li+,Al3+,220℃,2 hr) 50 圖4.16 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(Na+,Al3+,220℃,0.5 hr) 52 圖4.17 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(Na+,Al3+,220℃,1 hr) 53 圖4.18 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(Na+,Al3+,220℃,2 hr) 54 圖4.19 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(K+,Al3+,220℃,0.5 hr) 55 圖4.20 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(K+,Al3+,220℃,1 hr) 56 圖4.21 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(K+,Al3+,220℃,2 hr) 57 圖4.22 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(NH4+,Al3+,220℃,0.5hr) 59 圖4.23 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(NH4+,Al3+, 220℃,1 hr) 60 圖4.24 攪拌研磨12 hr樣品水熱處理後X光繞射圖譜(NH4+,Al3+,220℃,2 hr) 61 圖4.25 水熱反應時間與絹雲母中K+ 置換量(水熱反應溶液離子:Li+、Al3+ ,220℃) 64 圖4.26水熱反應時間與絹雲母中K+ 置換量(水熱反應溶液離子:Na+、Al3+ ,220℃) 65 圖4.27水熱反應時間與絹雲母中K+ 置換量(水熱反應溶液離子:NH4+、Al3+ ,220℃) 67 圖4.28 水熱反應時間與絹雲母K+ 置換量關係圖 71 圖4.29 水熱反應時間與絹雲母中K+、及Na+或Li+ 含量之關係 72 圖4.30 絹雲母及葉臘石經水熱反應後之轉換率 73

    1. 台灣經濟礦物卷二台灣非金屬經濟礦物,譚立平, 魏稽生編著,經濟部中央地質調
    查所,民國86年 。
    2. 陳其瑞,”台東縣向陽雲母礦成之初步研究,”經濟部中央地質調查所特刊3號,
    pp.161-169(民國73年12月) 。
    3. Cornelis, K. and C.S. Hurlbut, Jr. , Manual of Mineralogy, 1993.
    4. 溫紹炳,雷大同,黃紀嚴,台灣片狀矽酸鹽礦之利用開發計劃報告,經濟部礦業司,民
    國89年11月。
    5. 李宗銘,”半導體封裝材料發展趨勢,”工業材料139期,pp.108-116頁(民國87年7月)
    6. 范玉玟,”IC構裝材料發展趨勢,”工業材料151期,69-77頁(民國88年7月)。
    7. 王春山及何宗漢,”低應力半導體封裝材料之簡介,”工程,19-28頁(民國89年11月)。
    8. 劉文隆,”內藏式電容高介電常數材料,”工業材料,151期,107-116頁(民國88年7
    月)。
    9. Kastner, E., M. Nardin, E. Papirer and G. Riess., ”Coupling Filling in
    Polypropylene,” Journal of Material Sci., vol.7, pp.955-957(1988).
    10. Grim, R. E., Clay Mineralogy, McGraw-Hill, New York, 1953.
    11. 張仲民,普通土壤學,國立編譯館出版,台北市,民國77年。
    12. Theng, B.K.G., “Formation and properties of Clay-Polymer
    Complexes,” New York, Elsevier Scientific Pub. Co.(1979).
    13. 鄭水林,超細粉碎,中國建材工業出版社,民國88年。
    14. 李文鐘,選礦學,世界書局,台北市,民國60年。
    15. Schonet, K., ” Physical and Technical Aspects of Very and Micro Fine
    Grinding,” Proceeding of Second World Congress of Particle Tech., Kyoto,
    Japan, pp.257-271(1990).
    16. Austin, L.G., R,R, Klimpel and P.T. Luckie, Process Engineering of Size
    Reduction:Ball Milling, Society of Mining Engineers, New York( 1984).
    17. Wills, B.A., Mineral Processing Technology:An Introduction to The
    Practical Aspects of Ore Treatment and Mineral Recovery, Oxford, New York
    (1979).
    18. Lowrison, G.C., Crushing and Grinding-The Size Reduction of Solid Materials
    (1974).
    19. Kerr, M.C. and J.S. Reed, “Comparative Grinding Kinetics and Grinding
    Energy During Ball Milling and Attrition Milling,” Ceramic Bulletin,
    vol.71, No.12(1992).
    20. 顏富士,葉鎰輝,”台灣西南部主要泥岩坡地所含黏土之物性特性研究,”行政院國家
    科學委員會,防災科技研究報告,73-26號,民國75年。
    21. Becker, M. and J. Schwedes, “Comminution of ceramics in stirred media
    mills and wear of grinding,” Powder Technology Vol.105, pp.374-381(??).
    22. Cho. H., M.A. Waters and R. Hogg, “Investigation of the grind limit in
    stirred media milling,” Int. J. Mineral Processing,Vol.44-45, pp.607-615
    (1996).
    23. Ikazaki, F., K. Uchida, K. Kamiya, A. Kawai, A. Gotoh and E. Akiba,”
    Chemically assisted dry comminution of sericite dry comminution method
    accompanied by ion-exchange,” Int. J. Miner. Process. Vol.44-45,pp.93-
    100(1996).
    24. Papiper, E., A. Eckhardt and F. Muller,”Grinding of muscovite: influence
    of the grinding medium,” J. Materials Science Vol.25, pp.5109-5117(1990).
    25. Tomita, K., “Experimental Transformation of 2M Sericite into a Rectorite -
    Type Mixed-Layer Mineral by Treatment with Various Salts, ” Clays and
    Clay Materials, Vol.25, pp.302-308(1997).
    26. Caseri, W.R., R.A. Shelden and U.W. Suter, “Preparation of muscovite with
    ultrahigh specific surface area by chemical cleavage,” Colloid and Polymer
    Science,Vol. 270, pp.392-398(1992).
    27. Osman,. M.A, W.R. Caseri and U.W. Suter, “H+/Li+ and H+/K+ Exchange on
    Delaminated Muscovite Mica,” Journal of Colloid and Interface
    Science ,Vol.198, pp.157-163(1998).
    28. Osman. M.A, C. Moor, W.R. Caseri and U.W. Suter, “ Alkai Metals Ion
    Exchange on Muscovite Mica,” Journal of Colloid and Interface
    Science ,Vol.209 pp.232-239(1999).
    29. 向陽絹雲母之粒徑縮減研究,陳仕宏,成功大學碩士論文,民國90年。

    下載圖示 校內:2004-08-01公開
    校外:2004-08-01公開
    QR CODE