| 研究生: |
李維中 Lee, Wei-Chung |
|---|---|
| 論文名稱: |
電致變色元件用氧化鎢薄膜特性及有機發光二極體性能之改善 The Improvements of Tungsten Oxide Film’s Characteristics for Electrochromic Device and OLED’s Performances |
| 指導教授: |
方炎坤
Yeh, Wen-Kuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 有機發光二極體 、氧化鎢 |
| 外文關鍵詞: | OLED, Tungsten Oxide |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究主題首先為改進氧化鎢膜之電致變色能力。吾人藉由改變靶材-基板距離去觀察氧化鎢膜表面效,對於所製作的氧化鎢膜進行電致變色性能量測與利用表面狀態量測提出一合理的解釋。此為傳統直流濺鍍方法所產生之氧化鎢膜膜質緻密卻變色性能不佳的狀況,提供一有效、方便適合做大面積變色顯示器的濺鍍方法。而為了配合此氧化鎢膜的低溫濺鍍製程,吾人研究了利用單、雙極直流脈衝磁控濺鍍法(Unipolar/Bipolar dc-pulsed magnetron)鍍製ITO導電膜。吾人藉由改變雙極性脈衝供應器之負極脈衝維持時間與正極脈衝維持時間的比值,來研究ITO薄膜特性。結果發現脈衝維持時間的比值對ITO膜的光電特性、表面粗糙度、濺鍍速率有很大的影響。在於某依條件下,吾人可以用一頗高的濺鍍速率得到高穿透率、低電阻直、低表面粗糙度的ITO導電膜。以此膜與氧化鎢膜所堆積的電變色元件所展現的變色能力亦較傳濺鍍方法統製造的ITO膜為佳。
再者,對於有機發光二極體(OLED)吾人研究了兩種方式來提升元件之發光效率。其一為利用直流鍍濺鍍法輔以離子輔助蒸(IAD),於硬化處理過後之塑膠PC基板上製鍍光電性能、表面粗糙度均優的氧化銦錫(IZO)導電膜,並以此為OLED元件基板,製造出發光亮度頗佳的塑膠電激發光元件,由於是使用塑膠基板來取代厚重的玻璃,更展現出可撓曲不易損毀的特性。其二,吾人利用在成長雙層結構有機發光二極體元件(ITO/TPD/Alq3/Al)中的各有機層時,分別通入氮氣一起共蒸鍍來改善元件的發光特性。對於氮氣與電子傳輸層(Alq3)共蒸鍍所製造的OLED元件,其啟動電壓與操作電壓分別降至0.8及4.2伏特;而氮氣與電洞傳輸層(TPD)共蒸鍍所製造的OLED元件,則可將其發光效率提高至不參雜氮氣元件的八倍,達27 cd/A。
總而論之,本論文中成功的利用直流濺鍍系統製造出建築用智慧型窗戶(Electrochromic Device)及目前光電產業界頗受關注的有機發光二極體所需之透明之導電膜,並且利用真空熱蒸鍍法完成有機發光二極體之製作。更要強調的是所使用之鍍膜技術和設備均是目前光電業界生產大面積顯示器所使用的,吾人寄望將來本論文之研究成果能實際應用於大面積、高速率之量產鍍膜製程上。
In this dissertation, the improvements of tungsten oxide film’s characteristics for electrochromic device have successfully achieved by two methods as following: First, it is found that the electrochromic performance and the surface morphology of the tungsten trioxide (WO3) thin films sputtered by a dc reactive magnetron sputtering system, are strongly affected by the target-substrate distance. The coloration efficiency (CE) at 633 nm of the sputtered WO3 are 16 cm2/C and 50 cm2/C at the T-S distances of 6 cm and 18 cm, respectively. The film sputtered at longer target-substrate distance was rough, porous, and having cone-shaped columns morphology, thus offering a good electrochromic performance for opto-switching applications. Second, indium tin oxide (ITO) film, prepared by bipolar dc-pulsed magnetron sputtering in a mixture of argon and oxygen onto unheated glass substrates, has high transmittance, low resistivity, and low surface roughness. The ITO film can be utilized as transparent conducting layer of electrochromic devices with WO3, and the device exhibits better electrochromic performances in comparison to those measured with commercially available ITO films on glass substrates.
In addition, two methods of improving OLED (Organic Light Emitting Diode) performance were demonstrated successfully. First, high-quality indium zinc oxide (IZO) films (60-220 nm) were first grown on hardened poly-carbonate (HPC) substrate by ion-assisted dc magnetron sputtering without a post annealing treatment. IZO films grown at low temperature (~50 ℃) by ion-assisted dc magnetron sputtering were used for the organic light-emitting devices HPC substrate as a transparent anode. The as-prepared OLED shows an excellence efficiency and higher luminance in average, which is better than that prepared with commercial ITO anode. On the another hand, the bi-layer OLED, which Alq3 (Aluminum Tris-(8-hydroxyquinoline)) and TPD (N, N’-diphenyl-N, N’ bis (3-methylphenyl)-1, l’-bipheny-4, 4’-diamine) are used as the electron transport layer (ETL) and hole transport layer (HTL), respectively, exhibits significant improvements on current efficiency and power efficiency, when ETL and HTL were evaporated in the optimum N2 gas ambient, respectively.
[1-1] C.G. Granqvist, , Solid State Ionics, 53-59 (1992) 479.
[1-2] C.G. Granqvist in: Physics of Thin Films, eds. M. Francombe and J. Vossen, Vol. 17 (academic, San Diego, 1993), pp.301.
[1-3] J. A. Powell, L. G. Matus, and M. A. Kuczmarski, “Growth and characteristics of cubic single-crystal SiC films on Si,” J. Electrochem. Soc., vol.134, no.6, pp.1558-1565, 1987.
[1-4] W. J. Lee, Y. K. Fang, Jyh-Jier Ho, W. T. Hsien, S. F. Ting, Daoyang Huang, Fang. Ho, “Effect of Surface Porosity on Tungsten Trioxide Films’ Electrochromic Performance”, J. E. M., vol.61, no.10, pp.4889-4893, 1987.
[1-5] W. J. Lee, Y. K. Fang, Jyh-Jier Ho, C. Y. Chen, S. F. R. Chen, R, Y. Tsai, D. Huang, F. C. Ho, “Optimizing Indium Tin Oxide Thin Films with Bipolar d.c.-pulsed Magnetron Sputtering for Electrochromic Device Applications”, J. M. S., 13, pp.751-756, 2002.
[1-6] R. B . Goldner, R. L. Chapman, G. Foley, E. L. Goldner, T. Hass, P. Norton, G. Seward, K. K. Wong, Solar Energy Mater., 14, pp.195, 1986.
[1-7] T. Kamamori, J. Nagai, M. Mizuhashi, Electro-optical Device, U. S. Patent 4, 671, 619, 1987. A.
[1-8] T. Kamamori, J. Nagai, M. Mizuhashi, Proc. SPIE 653, 2. 1986.
[1-9] J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, Appl. Phys.Lett.,. 51, pp.913, 1987.
[1-10] C. W. Tang, VanSlyke, S. A. “Organic Electroluminescent Diodes”, Thin Solid Film, vol.254, pp.3-6, 1995.
[1-11] T. L. Lin, L. Sadwich, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Organic Electroluminescent Devices with BrightBlue Emission”, Optoelectronics. Devices & Technol., 7, pp. 83, 1992.
[1-12] W. J. Lee, Y. K. Fang, Jyh-Jier Ho, C. Y. Chen, L. H. Chiou, S, J. Wang, F. Dai, T. Hsieh, R. Y. Tsai, D. Huang, F. C. Ho, “Organic Light-Emitting Diode on Indium Zinc Oxide Film Prepared by Ion Assisted Deposition dc Sputtering System”, to be publish on Solid-State Electronics, 2002.
[1-13] W. J. Lee, Y. K. Fang, Hsin-Che Chiang, S. F. Ting, S. F. Chen, W. R. Chang, C. Y. Lin, T. Y. Lin, W. D. Wang, S. C. Hou, “Improving Turn On Voltage and Driving Voltage of Organic Electroluminescent Devices with Nitrogen Doped Electron Transporter”, to be publish on Solid-State Electronics, 2002.
[1-14] W. J. Lee, Y. K. Fang, Hsin-Che Chiang, S. F. Ting, S. F. Chen, W. R. Chang, C. Y. Lin, T. Y. Lin, “Improving Turn On Voltage and Driving Voltage of Organic Electroluminescent Devices with Nitrogen Doped Hole Transporter”, IEEE Electron Devices Letter. (in submmitting).
[2-1] J. Arakaki, R. Reyes, M. Horn, and W. Estrada, Solar Energy Materials and Solar Cells, 37, 33 (1995).
[2-2] C. G. Granqvist, Solar Energy Materials and Solar Cells, 32, 369 (1994).
[2-3] Klaus Bange and Thomas Gambke, Advanced Materials, 2, 10-16, (1990).
[2-4] R.B. Goldner, F.O. Arntz, G. Berera, T.E. Haas, G. Wei, K.K. Wong, and P.C. Yu, Solid State Ionics, 53-56, 617 (1992).
[2-5] R.B. Goldner, J. Vac. Sci. Technol., A13(3), 1088, (1995).
[2-6] T.C. Arnoldussen, J. Electrochem. Soc., 128, 117 (1981)..
[2-7] I.F. Chang and W.E. Howard, IEEE Trans. Electron Devices, ED-22, 749 (1975).
[2-8] H. Kaneko, K. Miyake, and Y.Teramoto, J. Appl. Phys., 53, 4416 (1982).
[2-9] M. Nabavi, S. Doeuff, C. Sanchez, and J. Livaze, Mater. Sci. Eng., B3, 203 (1989)
[2-10] J. S. E. M. Svensson and C. G. Granqvist, Proc. SPIE, 502, 30 (1984).
[2-11] R. B. Goldner and R. D. Rauh, Proc. SPIE, 428, 38 (1983).
[2-12] R. B. Goldner, T. E. Haas, F. O. Arntz, S. Slaven, K. K. Wong, B. Wilkens, C. Shepard, and W. Lanford, Appl. Phys. Lett., 62(14), 1699 (1993).
[2-13] P. V. Ashrit, K. Benaissa, G. Bader, F. E. Girouard, and Vo-Van Truong, Solid State Ionics, 59, 47 (1993).
[2-14] H. S. Witham, P. Chindaudom, I. An, R. W. Collins, R. Messier, and K. Vedam, J. Vac. Sci. Technol., A11(4), 1881 (1993).
[2-15] Iorganic File, Plate 18-1418 (Mineral Power Diffraction File , 1986).
[2-16] A. P. Giri and R. Messier, Mater. Res. Soc. Symp. Proc. 24, 221 (1984).
[2-17] J. Nagai, T. Kamimori, and M. Mizuhashi, Proc. SPIE, 502, 59 (1984).
[2-18] D. K. Benson and C. E. Tracy, Proc. SPIE, 562, 46 (1985).
[2-19] W. C. Dautremount-Smith, Displays 3, 3 (1982); 3, 67 (1982).
[2-20] S. A. Agnihotry, K. K. Saini, and S. Chandra, Ind. J. Pure Appl. Phys. 24, 19 (1986); 24, 34 (1986).
[2-21] K. Yamanaka, Jpn. J. Appl. Phys. 25, 1073 (1982).
[2-22] R. C. Ross, A. G. Johncock, and A. R. Chan, J. Non-Cryst. Solids, 66, 81 (1984).
[3-1] J. L. Vossen, "Transparent conducting films," Phys. Thin Films, 9, 1-71 (1977).
[3-2] R. P. Howson and M. I. Ridge, "Heat mirrors on plastic sheet using transparent oxide conducting coatings," Proc. SPIE, 324, 16-22 (1982).
[3-3] T. Karasawa and Y. Miyata, "Electrical and optical properties of indium tin oxide thin films deposited on unheated substrates by d.c. reactive sputtering," Thin Solid Film, 223, 135-139 (1993).
[3-4] T. Oyama, N. Hashimoto, J. Shimizu, Y. Akao, H. Kojima, K. Aikawa, and K. Suzuki, "Low resistance indium tin oxide films on large scale glass substrate," J. Vac. Sci. Technol,. A10(4), 1682-1686 (1992).
[3-5] J. A. Doborwolski, F. C. Ho, D. Menagh, R. Simpson, and A. Waldorf, "Transparent, conducting indium tin oxide films formed on low or medium temperature substrates by ion-assisted deposition," Appl. Opt., 26, 5204-5210 (1987).
[3-6] R.-Y. Tsai, F.-C. Ho, and M.-Y. Hua, "Annealing effects on the properties of indium tin oxide films coated on soda lime glasses with a barrier layer of TiO2-SiO2 composite films," Opt. Eng., 36, 2335-2340 (1997).
[3-7] S. B. Lee, J. C. Pincenti, A. Cocco, and D. L. Naylor, "Electronic and optical properties of room temperature sputter deposited indium tin oxide," J. Vac. Sci. Technol., A11, 2742-2746 (1993).
[3-8] K. Carl, H. Schmitt, and I. Friedrich, "Optimization of sputtered ITO films with respect to oxygen partial pressure and substrate temperature," Thin Solid Films, 295, 151-155 (1997).
[3-9] W.-F. Wu and B.-S. Chiou, “Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films,” Applied Surface Science, 68, 497-504 (1993).
[3-10] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, "Pulsed magnetron sputter technology," Surf. Coatings Tech., 61, 331-337 (1993).
[3-11] M. Scherer, J. Schmitt, R. Latz, and M. Schanz, "Reactive alternating current magnetron sputtering of dielectric layers," J. Vac. Sci. Technol., A10, 1772-1776 (1992).
[3-12] G. Este and W.D. Westwood, "A quasi-direct-current sputtering technique for the deposition of dielectrics at enhanced rates," J. Vac. Sci. Technol., A6, 1845-1848 (1988).
[3-13] S. Honda, A. Tsujimoto, M. Watamori, and K. Oura, "Oxygen content of indium tin oxide films fabricated by reactive sputtering," J. Vac. Sci. Technol., A13, 1100-1103 (1995).
[3-14] Iorganic File, Plate 6-416 (International Center for Diffraction Data, 1998).
[3-15] B. D. Cullity, "Elements of x-ray diffraction," 2nd. ed., pp. 102, Addition-Wesley Publishing Company., Inc (1978).
[3-16] T. Minami, T. Kakumu, Y. Takeda, and S. Takata, "Highly transparent and conductive ZnO-In2O3 thin films prepared by d.c. magnetron sputtering," Thin Solid Films, 290-291, 1-5 (1996).
[3-17] K. Sreenivas, T. S. Rao, A. Mansingh, and S. Chandra, "Preparation and characterization of rf sputtered indium tin oxide films," J. Appl. Phys., 57, 384-392 (1985).
[3-18] D. A. Glocker, "Influence of the plasma on substrate heating during low-frequency reactive sputtering of AlN," J. Vac. Sci. Technol., A11, 2989-2993 (1993).
[4-1] J. L. Vossen, "Transparent conducting films," Phys. Thin Films, 9, 1-71 (1977).
[4-2] R. P. Howson and M. I. Ridge, "Heat mirrors on plastic sheet using transparent oxide conducting coatings," Proc. SPIE, 324, 16-22 (1982).
[4-3] T. Karasawa and Y. Miyata, "Electrical and optical properties of indium tin oxide thin films deposited on unheated substrates by d.c. reactive sputtering," Thin Solid Film, 223, 135-139 (1993).
[4-4] T. Oyama, N. Hashimoto, J. Shimizu, Y. Akao, H. Kojima, K. Aikawa, and K. Suzuki, "Low resistance indium tin oxide films on large scale glass substrate," J. Vac. Sci. Technol,. A10(4), 1682-1686 (1992).
[4-5] H.L. Hartnagel, A.L. Dawar, A.K. Jain and C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics, Bristol, Chap. 2, 85-102, (1995).
[4-6] J. A. Doborwolski, F. C. Ho, D. Menagh, R. Simpson, and A. Waldorf, "Transparent, conducting indium tin oxide films formed on low or medium temperature substrates by ion-assisted deposition," Appl. Opt., 26, 5204-5210 (1987).
[4-7] R.-Y. Tsai, F.-C. Ho, and M.-Y. Hua, "Annealing effects on the properties of indium tin oxide films coated on soda lime glasses with a barrier layer of TiO2-SiO2 composite films," Opt. Eng., 36, 2335-2340 (1997).
[4-8] S. B. Lee, J. C. Pincenti, A. Cocco, and D. L. Naylor, "Electronic and optical properties of room temperature sputter deposited indium tin oxide," J. Vac. Sci. Technol., A11, 2742-2746 (1993).
[4-9] K. Carl, H. Schmitt, and I. Friedrich, "Optimization of sputtered ITO films with respect to oxygen partial pressure and substrate temperature," Thin Solid Films, 295, 151-155 (1997).
[4-10] W.-F. Wu and B.-S. Chiou, “Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films,” Applied Surface Science, 68, 497-504 (1993).
[4-11] David A. Glocker, J. Vac. Sci. Technol. A11, 2989-2993 (1993).
[4-12] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, "Pulsed magnetron sputter technology," Surf. Coatings Tech., 61, 331-337 (1993).
[4-13] J. Arakaki, R. Reyes, M. Horn, and W. Estrada, Solar Energy Materials and Solar Cells, 37, 33 (1995).
[4-14] C. G. Granqvist, Solar Energy Materials and Solar Cells, 32, 369-382 (1994).
[4-15] Klaus Bange and Thomas Gambke, Advanced Materials, 2, 10-16, (1990).
[4-16] R.B. Goldner, F.O. Arntz, G. Berera, T.E. Haas, G. Wei, K.K. Wong, and P.C. Yu, Solid State Ionics, 53-56, 617-627 (1992).
[4-17] R.B. Goldner, J. Vac. Sci. Technol., A13 (3), 1088-1094 (1995).
[4-18] R. B. Goldner, T. E. Haas, F. O. Arntz, S. Slaven, K. K. Wong, B. Wilkens, C. Shepard, and W. Lanford, Appl. Phys. Lett., 62(14), 1699-1701(1993).
[4-19] P. V. Ashrit, K. Benaissa, G. Bader, F. E. Girouard, and Vo-Van Truong, Solid State Ionics, 59, 47-57 (1993).
[4-20] H. S. Witham, P. Chindaudom, I. An, R. W. Collins, R. Messier, and K. Vedam, J. Vac. Sci. Technol., A11 (4), 1881-1887 (1993).
[4-21] R. Swanepoel, J. Phys. E: Sci. Instrum., 16, 1214-1222 (1983).
[4-22] T. Karasawa and Y. Miyata, Thin Solid Film, 223, 135-139 (1993).
[4-23] S. Honda, A. Tsujimoto, M. Watamori, and K. Oura, J. Vac. Sci. Technol., A13, 1100-1103 (1995).
[4-24] W.J. Lee, Y. K. Fang, J.-J. Ho, W. T. Hsieh, S. F. Ting, Daoyang Huang, and Fang C. Ho, J. of Electronic Materials, 29 (2), 183-187, (2000).
[4-25] J. S. E. M. Svensson and C. G. Granqvist, Appl. Phys. Lett., 49, pp. 1556, (1986).
[5-1] C.W. Tang, and S.A. VanSlyke, “ Organic electroluminescent diodes,” Appl. Phys. Lett., vol.51, pp.913-915, 1987.
[5-2] T. Wakimoto, R. Murayama, H. Nakada, K. Imai, G. Sato, and M. Nomura, “Organic electroluminescent diodes with doped quinacridone derivatives,” Polymer Preprints, Japan, Vol.40, p.E969, 1991 (English edition).
[5-3] G. Gustafsson, Y. Gao, G.M. Treacy, F. Klavetter, N. Colaneri, and A.J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature, Vol.357, pp.477-479, 1992.
[5-4] D.Z. Garbuzov, V. Bulovic, P.E. Burrows, and S.R. Forrest, “Photo-luminescence and absorption of aluminum-tris-quinolate (Alq3) thin films,” Chem.. Phys. Lett., Vol.249, pp.433-437, 1996.
[5-5] P.E. Burrows,G. Gu, V. Bulovic, S.R. Forrest, and M.E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron Devices, Vol.44, pp.1188-1203, 1997.
[5-6] H. Aziz, Z. Popovic, S. Xie, A.-M. Hor, N.-X. Hu, and C. Tripp, “Humidity-induced crystallization of tris(8-hydroxyquinoline) aluminum layers in organic light-emitting devices,” Appl. Phys. Lett., Vol.72, No.7, pp.756-758, 1998.
[5-7] F.A. Smidt, “Use of ion beam assisted deposition to modify the microstructure and properties of thin films,” International Material Reviews, 35, No.2, p.61, 1990.
[5-8] T. Minami, T. Kakumu, Y. Takeda, and S. Takata, “Highly transparent and conductive ZnO-In2O3 thin films prepared by dc magnetron sputtering,” Thin Solid Films, Vol.290-291, pp.1-5, 1996.
[5-9] H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Katati, and D.B. Chrisey, “Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices,” J. of Applied Phys., Vol.86, No.11, pp6451-6461, 1999.
[5-10] J. Allinowski, “Electronic processes in organic electroluminescence”, in S. Miyata and H. S. Nalwa Ed., Organic electroluminescent materials and devices, Gordon and Breach publishers, The Netherlands, 1997.
[5-11] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material” Appl. Phys. Lett., Vol.73, pp 729-731, 1998.
[5-12] X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer”, Appl. Phys. Lett., Vol.78, pp78-80 410, 2001.
[5-13] C. Ganzorig and A. Fujihirj, “Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer” Appl. Phys. Lett., Vol.77, pp4211-4213, 2000.
[5-14] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices” J.Appl.Phys., Vol.79, pp7991-8005, 1996.
[5-15] S. M. Sze, Physics of semiconductor devices, John Wiley and Sons, New York, Chap.7 ,1983.
[5-16] C. W. Ko and Y. T. Tao, “Bright white organic light-emitting diode”, Appl. phys. lett. Vol.79, No25, pp.4234-4236, 2001.
[5-17] H. An, B. Chen, J. Hou, J. Shon and S. Lin, “Exciton confinement in oganic multiple quantum well structure”, Appl. Phys. Lett. Vol.69, No15, pp.2160-2162, 1996.
[5-18] T. Mori, K. Obata, K. Imaizumi, and T. Mizutani, “Preparation and properties of an organic light emitting diode with two emission colors dependent on the voltage polarity”,Appl. Phys. Lett., vol. 69, No.22, pp.3309-3310 ,1996.
[5-19] V.E. Choong, S. Shi, J. Curless, C.C. Shieh, H.C. Lee, and F. So, “Organic light-emitting layer”, Appl. Phys. Lett., vol.75,No.2,pp.172-174,1999.
[5-20] Z.D.Popovic, H.Aziz, C.P.Tripp, N.X. Hu,A. M. Hor, and G.Xu, “Improving the efficiency and stability of organic light emitting devices using mixed emitting layer”, Proc. SPIE, vol.3476,pp.68-73,1998.
[5-21] C.F.Qiu, H.Y. Chen, M. Wong, and H.S. Kwok, “Dependence of the current and power efficiencies of organic light-emitting diode on the thickness of the constituent organic layers”, IEEE Transactions on ED, vol.48, No9, pp2131-2137, September 2001..
[5-22] D.M.Pai, J.F. Yanus, and M. Stolka,“Trap-controlled hopping transport”, vol.88, pp.4714-4717, J.Phys. Chem.,1984.
[5-23] J.C.Zolper, S.J.pearton, C.R.Abernathy, and C.B.Vartuli, “Nitrogen and fluorine ion implantation in InxGa1-xN”,Appl. Phys. Lett.vol.66, No.22, pp.3042-3044, 29 May 1995.
[5-24] W.o.Groves, “The effect of nitrogen dopig on GaAsP electroluminescent diodes”, Appl. Phys. Lett, 19(1971), pp.1348-1350.