簡易檢索 / 詳目顯示

研究生: 鄭逸
Cheng, Yi
論文名稱: 超穎結構樑之波傳與擷能分析
Wave Motion and Energy Harvesting Analysis of a Metamaterial Beam
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 超穎材料能隙頻散關係薄膜質量共振器擷能
外文關鍵詞: metamaterials, bandgap, dispersion relation, membrane-split-ring resonator, energy harvesting
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超穎材料是一種特殊的人造材料,其具有特殊的物理現象,現今期刊有許多介紹及應用,多半應用於吸收振動或阻隔噪音。本論文探討內含週期薄膜及半月形質量塊之超穎材料結構樑的波傳行為,由頻散關係圖(dispersion curve)中可發現特定頻率下產生能隙,阻絕彈性波的傳遞。能隙分成兩大類,分別為布拉格散射(Bragg band gap)與局部共振能隙(Locally resonant band gap) ,可藉由調整薄膜張力或質量塊的高度、角度與位置,控制減振頻率及減振頻寬,主結構的振動可於特定頻率下被抑制。而另一種方法是將不同種質量塊薄膜結構進行週期性排列或是單層局部共振器改成多層局部共振器,可有效提高減振效能及拓寬頻寬,利用振動實驗與有限軟體(COMSOL Multiphysics)進行分析,驗證減振頻帶的位置正好對應於頻散曲線中能隙的頻率範圍。最後將壓電片黏貼於共振系統上,將能量擷取出來,獲得雙層結構壓電片並聨時具有最佳的電壓值0.73V,再對電阻匹配進行探討,於電阻200kΩ時得到最高功率1.185×〖10〗^(-6)W,達到同時具有減振與擷能的效果。

    In this thesis, we explore the propagation behavior of a metamaterial beam with membrane-split-ring structures acting as local resonators. There are two kinds of bandgaps occurred in the dispersion curve. One is the Bragg bandgap; the other is the resonant-type bandgap. When the exciting force frequency is close to resonant frequency of the resonator, the flexural wave is attenuated. Bandgap frequencies can be adjusted by changing membrane tension, mass magnitude, opening angle, and the location of the mass. The finite element software (COMSOL Multiphysics) is employed to predict the dispersion relation and vibration response. It is found that the proposed membrane-split-ring metamaterial beam can perform well not only in vibration reduction but also energy harvesting.

    中文摘要 I Extend Abstract II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 符號 XV 第一章 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 章節介紹 5 第二章 超穎結構設計與模擬分析 6 2.1 設計模型與材料參數 6 2.1.1 收斂分析 8 2.1.2 頻散曲線 11 2.1.3 有效質量密度 13 2.1.4 參數改變對頻散曲線的影響 15 2.2 五種不同結構比較 21 第三章 超穎結構樑振動分析 27 3.1 頻率響應分析-有限元素模擬 27 3.1.1 附加薄膜與分開質量塊之超穎結構樑 27 3.1.2 五種不同結構樑比較 30 3.2 頻率響應分析-實驗驗證 32 3.2.1 樣本建構 32 3.2.2 實驗儀器 34 3.2.3 分析軟體 37 3.2.4 實驗架構與結果 39 3.2.5 結構改變對頻率響應的影響 42 第四章 超穎結構樑擷能 44 4.1 壓電原理 44 4.1.1 壓電效應 44 4.1.2 壓電特性與參數 45 4.1.3 機電交互關係式 46 4.1.4 壓電材料 49 4.1.5 壓電極化 50 4.2 擷能實驗架構與量測 50 4.2.1 壓電實驗流程 51 4.2.2 壓電測量結果 53 4.2.3 儲能穩壓 60 第五章 結論 63 參考文獻 65 附錄一 ULTEM 1000 Film 薄膜參數 67 附錄二 2-1002908-0PVDF震動感測壓電片 68 附錄三 蕭基二極體N5819 69

    [1] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. D. Rouhani, Acoustic band structure of periodic elastic composites, Phys Rev Lett 71(13), 2022-2025 (1993).
    [2] A. J. F. Metherrll and R. M. Fisher, Consequences of Bloch´s theorem on the dynamical theory of electron diffraction contrast, Physica Status Solidi 32(2), 551-562 (1969).
    [3] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ∊ and μ., Physics-Uspekhi 10(4), 509-514 (1968).
    [4] A. Selamet, M. Xu, I. J. Lee, and N. Huff, Helmholtz resonator lined with absorbing material, The Journal of the Acoustical Society of America 117(2), 725-733 (2005).
    [5] H. H. Huang and C. T. Sun, Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New Journal of Physics 11(1), 013003 (2009).
    [6] H. H. Huang and C. T. Sun, Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young's modulus, Journal of the Mechanics and Physics of Solids 59(10), 2070-2081 (2011).
    [7] T. Kundu, R. Zhu, G. K. Hu, M. Reynolds, and G. L. Huang, An elastic metamaterial beam for broadband vibration suppression, Proc. of SPIE 8695, 86952J (2013).
    [8] T. Kundu, E. Baravelli, M. Carrara, and M. Ruzzene, High stiffness, high damping chiral metamaterial assemblies for low-frequency applications, Proc. of SPIE 8695, 86952K (2013).
    [9] H. H. Huang, C. T. Sun, and G. L. Huang, On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science 47(4), 610-617 (2009).
    [10] Y. Xiao, J. Wen, D. Yu, and X. Wen, Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms, Journal of Sound and Vibration 332(4), 867-893 (2013).
    [11] M. Nouh, O. Aldraihem, and A. Baz, Wave propagation in metamaterial plates with periodic local resonances, Journal of Sound and Vibration 341, 53-73 (2015).
    [12] R. Zhu, G. L. Huang, H. H. Huang, and C. T. Sun, Experimental and numerical study of guided wave propagation in a thin metamaterial plate, Physics Letters A 375(30-31), 2863-2867 (2011).
    [13] H. Zhang, Y. Xiao, J. Wen, D. Yu, and X. Wen, Flexural wave band gaps in metamaterial beams with membrane-type resonators: theory and experiment, Journal of Physics D: Applied Physics 48(43), 435305 (2015).
    [14] M. A. Nouh, O. J. Aldraihem, and A. Baz, Periodic metamaterial plates with smart tunable local resonators, Journal of Intelligent Material Systems and Structures 27(13), 1829-1845 (2016).
    [15] J. S. Chen, Y. J. Huang, and I. T. Chien, Flexural wave propagation in metamaterial beams containing membrane-mass structures, International Journal of Mechanical Sciences 131-132, 500-506 (2017).
    [16] J. S. Chen, and I. T. Chien, Dynamic behavior of a metamaterial beam with embedded membrane-mass structures, The American Society of Mechanical Engineers 84(12), 121007 (2017).
    [17] C. J. Naify, C.-M. Chang, G. McKnight, and S. Nutt, Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials, Journal of Applied Physics 108(11), 114905 (2010).
    [18] C. J. Naify, C.-M. Chang, G. McKnight, and S. Nutt, Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses, Journal of Applied Physics 110(12), 124903 (2011).
    [19] J. S. Chen and D. W. Kao, Sound attenuation of membranes loaded with square frame-shaped masses, Mathematical Problems in Engineering 2016, 1-11 (2016).
    [20] A. Leblanc and A. Lavie, Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation, J Acoust Soc Am 141(6), EL538 (2017).
    [21] J. Li, X. Zhou, G. Huang, and G. Hu, Acoustic metamaterials capable of both sound insulation and energy harvesting, Smart Materials and Structures 25(4), 045013 (2016).
    [22] 周卓明, 壓電力學, 台灣:全華科計圖書股份有限公司 (2003).

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE