| 研究生: |
黃宏裕 Huang, Hung-Yu |
|---|---|
| 論文名稱: |
採用新型快閃折疊式架構之兩級式每取樣十億次五位元類比數位轉換器 A 5-bit 1-GSample/s Two-Stage A/D Converter with a New Flash Folded Architecture |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 電流式多工器 、頻率加乘效應 、摺疊式類比數位轉換器 、快閃式轉換器 |
| 外文關鍵詞: | current-mode multiplexer, frequency multiplication effect, folding A/D converter, flash A/D converter |
| 相關次數: | 點閱:67 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在超寬頻的應用下,我們提出一個採用新型快閃摺疊式架構的低功率高速類比數位轉換器設計。使用台積電 0.18 微米製程下線,驗證一個五位元每秒十億次取樣類比數位轉換器。此新型架構結合了快閃式以及摺疊式類比數位轉換器的特徵,前端架構是與傳統快閃式轉換器的前端架構相同,並且使用電流式多工器取代摺疊放大器,以得到循環式溫度計碼,且減緩了頻率加乘效應。採用此一架構,比較器的數目只要傳統架構的一半,其具有較小電路面積與降低輸入阻抗優點。模擬結果顯示,在取樣頻率為每秒十億次,輸入頻率趨近Nyquist rate時,擁有4.25的有效位元。除此之外,差分非線性誤差和積分非線性誤差分別小於0.175以及0.261最小位元。所消耗的功率為69 mW,每一次的資料轉換所消耗的能量約為2.23 pJ.
For multi-band OFDM UWB applications, we propose a new architecture, which combines the characteristics of flash and folding structures, for low-power high-speed analog-to-digital conversion. The analog front-end of the proposed design is the same as that of a typical flash A/D converter. By replacing folding amplifier with current-mode multiplexer (MUX), cyclic thermometer output codes, the digital output codes of a conventional folding A/D converter, can be obtained. By manipulating this arrangement, the frequency multiplication problem of a traditional folding amplifier is alleviated. Using the proposed architecture, the number of the comparators is reduced to 16, and it is 32 for a typical flash A/D converter. A 5-bit 1-Gsample/s A/D converter is designed in TSMC 0.18-m 1P6M CMOS process. Operating at 1-GSample/s, the ENOB is 4.25 bits at input frequency 500 MHz. The maximum DNL is no more than 0.175 LSB and the maximum INL is less than 0.261 LSB. This A/D converter consumes 69 mW from a 1.8 V supply voltage, achieving an FOM of 2.23 pJ/ conversion-step at 1-GSample/s.
[1] “FCC notice of proposed rule making, revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Federal Communications Commission, Washington, DC, ET-Docket 98-153.
[2] V. Kulkarni, “An Introduction to Ultra-Wideband (UWB) Technology,”
Kuroda Laboratory, Department of Electronics and Electrical Engineering, Keio University.
[3] “Ultra-Wideband (UWB Technology),” Intel Corp.: http://www.intel.com/technology/comms/uwb/download/Ultra-Wideband.pdf.
[4] R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag., vol. 43, no. 2, pp. 80-87, Feb. 2005.
[5] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[6] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing. New Jersey: Prentice Hall (2nd Edition).
[7] Application note 810, MAXIM: http://pdfserv.maxim-ic.com/en/an/AN810.pdf
[8] R. E. J. VAN DE GRIFT, I. W. J. M. RUTTEN, and M. VAN DER VEEN, “An 8-bit Video ADC Incorporating Folding and Interpolation Techniques,“ IEEE J. Solid-State Circuit, vol. sc-22, no. 6, Dec. 1987.
[9] Y. T. Liu and S. J. Chang, “Low-Power High-Speed Analog-to-Digital Converters,” Thesis for Master of Science, Department of EE, NCKU, Tainan, Taiwan, R.O.C.
[10] P. M. Figueiredo and J. C. Vital, “Kickback Noise Reduction Techniques for CMOS Latched Comparators,” IEEE Trans. Circuit Syst. II Exp. Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[11] A. G. W. Venes and R. J. van de Plassche, “An 80-MHz, 80-mW, 8-b CMOS Folding A/D Converter with Distributed Track-and-Hold Preprocessing,” IEEE J. Solid-State Circuit, pp. 1846-1853, Dec. 1996.
[12] M. P. Flynn and D. J. Allstot, “CMOS folding AD converters with current-mode interpolation,” IEEE J. Solid-State Circuits, vol. 31, no. 9, Sep. 1996.
[13] B. Razavi, Principle of Data Conversion System Design. New York: Wiley 1995.
[14] P. C. S. Scholtens and M. Vertregt, “A 6-b 1.6-Gsample/s flash ADC in 0.18-mm CMOS using averaging termination,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599-1609, Dec. 2002.
[15] D. G. Knierim, “Thermometer-to-adjacent binary encoder,” U.S. Patent no. 4733220, Mar. 22, 1988.
[16] B. Nikolić, V. G. Oklobdzija, V. Stojanović, W. Jia, J. K. Chiu, and M. M. Leung, “Improved sense-amplifier-based flip-flop: design and measurements,” IEEE J. Solid-State Circuits, vol. 35, pp. 876-884, June 2000.
[17] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier, ” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004.
[18] A. H. Ismail and M. I. Elmasry, “A Low Power Design Approach for MOS Current Mode Logic,” SOC Conference, 2003.
[19] H. Hassan, M. Anis, and M. Elmasry, “MOS Current Mode Circuits: Analysis, Design, and Variability.” IEEE TRAN. on VLSI Systems, vol. 13, no. 8, Aug. 2005.
[20] G. Geelen, “A 6b 1.1Gsample/s CMOS A/D converter,” in ISSCC Dig. Tech. Papers, Feb. 2001, pp. 128-129.
[21] X. Jiang, Z. Wang, and M. F. Chang, “A 2GS/s 6b ADC in 0.18mm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2003, pp. 322-323.
[22] C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kuttner, “A 6bit, 1.2GSps low-power flash-ADC in 0.13mm digital CMOS,” in Proc. 30th European Solid-State Circuits Conf., Sept. 2004, pp. 339-342.
[23] P. M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi, K. Tanabe, and J. Vital, “A 90nm CMOS 1.2V 6b 1GS/s two-step subranging ADC,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 568-569.