簡易檢索 / 詳目顯示

研究生: 李明靜
Lee, Ming-Ching
論文名稱: 河川表面流速與流量非接觸式量測方法之發展及應用
Development of Non-contact Methods for Water Surface Velocity and River Discharge Measurements
指導教授: 呂珍謀
Leu, Jan-Mou
賴泉基
Lai, Chan-Ji
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 169
中文關鍵詞: 質點影像量測脈衝雷達遙測河川流量
外文關鍵詞: river discharge, remote sensing, pulse radar, PIV
相關次數: 點閱:79下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要目的是應用及發展微波雷達與影像之非接觸的表面流速分佈量測技術以建立一河川流量遙測系統,此系統之發展包含三部份之研究:(一) 非接觸式之水面流速量測技術的發展;(二)水面流速與平均流速及水深關係之建立;(三)實務量測的驗證及應用,包括克服惡劣天候、洪水流及全天候量測等問題。

    影像流速量測的發展在小尺度的實驗室中已發展多年,但大尺度的量測應用卻很少。本研究以相關法及FFT計算為工具,建立大尺度河川水面流速影像量測技術,並分別以模擬流場、實驗渠道、電廠進水渠道量測加以驗證,其與實測數據差異均小於8 %。至於微波雷達之流速分佈量測系統,則以脈衝雷達為工具,依據水面雷達回波的布拉格效應與都卜勒頻移,獲得水面向雷達流速後,配合本文之流向解析法,使其可在5-10分鐘內利用單一雷達量測水面的流速分布。經由在曾文溪及基隆河的測試,並與流速計比對驗證結果顯示,其相對差異可小於3 %。

    假設河川於紊流流況下,垂向流速分布為對數律與冪次律型態,若將河川橫斷面視為若干矩形分區所組成,則依據該分區所測得之水面流速與粗糙長度,可推得該區表面流速與平均流速及水深,乃可求得分區流量再累加得斷面流量。粗糙長度主要影響因子為底床粒徑、河床形狀(沙坡或植生)及底床載傳輸運動的型態,除礫石河川中可依據底床粒徑推估外,一般河川很難直接量測,本文建議可利用既往之流速、水深等資料,建立粗糙長度在橫斷面上分布供水深推估時使用。此外,若河道可視為定床則可根據以往斷面資料,直接利用水位的量測計算水深。

    依本法所建立的河川流量遙測系統,分別於高屏攔河堰及基隆河瑞芳、五堵等處,作驗證量測獲得良好結果,尤其是高屏攔河堰與基隆河五堵處颱洪期流量歷程的測量結果,更顯示此遙測系統不受天候、洪水流影響,可近乎即時測量流量,預期日後可以此為基礎建立資訊時代之河川流量遙測系統。

    This study develops a non-contact method for measuring surface velocity and discharge in a river. Three major developments: (1) developing the remote sensing schemes for surface velocities detecting; (2) establishing the relation between the surface velocity and the discharge in a river; and (3) verification the discharge estimation technique; have been completed during this study.

    To obtain the surface velocity distribution, both Particle Image Velocimetry scheme (PIV) and Doppler radar system have been developed and applied. The present PIV scheme uses the FFT-based correlation algorithm and has been verified through three studies. These are: simulate flow, the flow through contract channel in laboratory, and the flow through tunnel-intake channel in field. The Doppler radar system is based on an X-band pulse radar(9.36GHz) which can scan the lateral distribution of surface velocity across a river section in 5-10 minutes, according to Bragg scattering from short waves produced by turbulent boils on the surface of the river. This measuring technique has also been verified in Tsengwen River and Keelung River. Surface velocity measurements, obtained using the radar and the current meter, the float method, and the PIV scheme, were closely compared, and the differences were within 8 %. The remote sensing technique is proven to be very effective and versatile.

    It is assumed that the vertical velocity distribution follows the universal law as the power-law and the logarithmic law in a highly turbulent river. If a river cross-section is divided into several rectangular sub-sections. Each of these sub-sections has measured surface velocity and pre-determined bed roughness. Then the mean velocity and depth of each sub-section can be estimated from the surface velocity and roughness length through the universal formula. Multiple mean velocity and depth of each sub-section and sum them to obtain the cross-sectional river discharge.

    The above methods of measurement have been successfully applied to measure floods at the Kaoping Weir and Keelung River for four typhoon events. This implies that the present development has practical ability as a fully automatic remote sensing system for river flow measurement.

    中文摘要 I 英文摘要 III 目錄 V 圖目錄 IX 表目錄 XIII 照片目錄 XIV 符號說明 XV 第一章、緒論 1 1-1 研究背景與目的 1 1-2 文獻回顧 4 1-3 研究內容與架構 7 1-4 本研究之貢獻 9 第二章、河川流量量測法之探討 11 2-1 流速量測 13 2-1-1 流速計及浮標量測法 14 2-1-2 聲波都卜勒流速儀 15 2-1-3 流速影像量測方法 16 2-1-4 微波雷達表面流速儀 17 2-2 水深量測 18 2-2-1 測桿或測繩 18 2-2-2 聲波測深儀 19 2-2-3 透地雷達 20 2-3 測量技術之比較 21 2-4 小結 26 第三章、河川流速分布及流量計算方法之建立 29 3-1 明渠流動之控制方程式 29 3-2 明渠二維流動之近似方程式 32 3-3 表面流速與水深之關係 37 3-2-1 對數律 37 3-2-2 冪次律 40 3-2-3 敏感度分析 42 3-4 表面流速與平均流速之關係 45 3-4-1 對數律 45 3-4-2 冪次律 47 3-5 建立流量計算方法 49 3-5-1 流量計算方法與程序 50 3-5-2 參數的決定 53 3-5 小結 58 第四章、河川水面流速影像量測法 61 4-1 數位影像處理 61 4-1-1 數位影像模式及過程 61 4-1-2 影像增強與復原 63 4-1-3 影像幾何轉換 65 4-2 二維影像流場流速量測方法 66 4-2-1 流場顆粒質點的追蹤 67 4-2-2 流場質點影像的量測 69 4-3 大尺度影像量測實施方法 73 4-3-1 影像增強處理 73 4-3-2 影像幾何尺度校正與還原 74 4-3-3 流場影像相關計算分析 76 4-4 應用結果分析 79 4-4-1 測試(1) – 模擬流場 79 4-4-2 測試(2) – 實驗渠道 84 4-4-3 測試(3) – 東口進水渠道 90 4-5 小結 92 第五章、微波雷達表面流速遙測 94 5-1 基本原理與雷達規格 94 5-1-1 微波測流基本原理 94 5-1-2 流向解析 99 5-1-3 雷達規格與參數 103 5-2 量測方法與步驟 109 5-3 量測結果分析與驗證 112 5-3-1 測試(1) ─ 曾文溪 113 5-3-2 測試(2) ─ 基隆河 116 5-4 小結 121 第六章、流速及流量遙測之應用結果與分析 123 6-1 應用(1) – 高屏攔河堰 123 6-1-1 平水期測量 125 6-1-2 颱洪期測量 – 象神颱風 128 6-2 應用(2) – 基隆河 135 6-2-1 粗糙長度的決定 135 6-2-2 平水期測量 137 6-2-3 颱洪期測量 141 6-3 應用(3) – 其他流場水面流速測量 148 6-3-1 基隆河感潮河段 148 6-3-2 濁水溪上游河段 150 6-4 小結 153 第七章、結論與建議 156 7-1 結論 156 7-2 建議 158 參考文獻 160 附錄I 傳統機械式流速儀量測法的改良-繩索測力計量測法 170 附錄II 最大熵流速公式與水面流速積分之應用與比較 179 附錄III 影像增強與復原的濾波方法 187 附錄IV 近岸水面流場的量測 191 圖目錄 圖2-1 河川流量量測方法與技術之分類 12 圖2-2 河川流量量測示意圖 13 圖2-3 流量測量船的設計 19 圖3-1 河川流速分布及座標系統 30 圖3-2 混合長度分布與理論公式之比較 36 圖3-3 垂向流速分布之示意圖 37 圖3-4 尾跡強度參數與雷諾數的關係 39 圖3-5 冪次律中不同的m值與對數律之比較 41 圖3-6 表面流速與水深關係之敏感度變化 44 圖3-7 冪次與對數律之表面流速與水深關係 45 圖3-8 冪次與對數律中平均流速與表面流速之比值隨相對水深之關係 49 圖3-9 流量計算之流程 53 圖3-10 新發大橋處河床底質粗糙隨橫向位置的變化 58 圖4-1 影像數位化的兩大過程 62 圖4-2 矩陣形式之數位化影像 63 圖4-3 影像幾何轉換之對應關係 65 圖4-4 影像灰階值內插方法之示意圖 66 圖4-5 兩幅連續影像間的質點移動 69 圖4-6 影像流速量測法的基本涵義 70 圖4-7 互相關法計算影像流場速度之過程 71 圖4-8 自相關法計算影像流場速度之過程 72 圖4-9 影像重新取樣的過程 76 圖4-10 利用FFT計算法求互相關函數並計算流場速度的流程 77 圖4-11 單一區塊質點的移動偵測 80 圖4-12 模擬之二連續平移影像 81 圖4-13 模擬之平移流場計算結果 82 圖4-14 模擬流場逆時針旋轉 之二連續影像 83 圖4-15 模擬流場旋轉之PIV計算結果 83 圖4-16 PIV量測之位移量離旋轉中心距離的變化情形 84 圖4-17 PIV量測流場旋轉之誤差隨距離旋轉中心位置變化之情形 84 圖4-18 試驗渠道佈置圖 85 圖4-19 實驗段的平面佈置圖 85 圖4-20 水面漂浮質點之偵測之例子 86 圖4-21 保護工後幾何校正前後之水面影像圖 87 圖4-22 水流流經保護工束縮段時的水面流場 88 圖4-23 流經保護工後的水面流場 88 圖4-24 束縮段的垂向流速分布 89 圖4-25 通過保護工後斜坡上的垂向流速分布 89 圖4-26 曾文溪東口進水相關位置圖 90 圖4-27 東口進水口漸變段水面速度場分布 91 圖4-28 東口進水口漸變段水面影像與速度場分布 92 圖5-1 雷達波入射水面造成之布拉格散射現象 95 圖5-2 雷達波因水面波紋布拉格散射共振之都卜勒頻譜 96 圖5-3 單雷達對於流向的解析 101 圖5-4 雙雷達速度座標解析 102 圖5-5 基本的脈衝雷達系統的組成與運作 104 圖5-6 脈衝雷達空間解析度的決定 107 圖5-7 雷達測量距離與雷達臨界傾角 之關係 109 圖5-8 雷達測量河川示意圖 110 圖5-9 雷達遙測河川流量的程序 111 圖5-10 曾文溪驗證河段相關位置圖 113 圖5-11 四種流速測量方法的結果比較 115 圖5-12 曾文溪推測水深與實測水深之比較 116 圖5-13 基隆河驗證河段及雷達測點相關位置圖 117 圖5-14 瑞峰橋上游斷面微波雷達與流速計水面流速量測之比較 118 圖5-15 五堵水位站河段微波雷達與流速計水面流速量測之比較 119 圖5-16 大直水位站微波雷達與流速計水面流速量測之比較 120 圖6-1 高屏堰微波雷達測站相關位置圖 124 圖6-2 高屏攔河堰微波雷達流量測量系統架構 124 圖6-3 高屏攔河堰排沙門開啟時的水面流速分布 127 圖6-4 高屏攔河堰排沙門開啟時之二維水面流場 127 圖6-5 象神颱風時高屏攔河堰的水面流場分布 131 圖6-6 高屏攔河堰上游之河床斷面變化 131 圖6-7 六號堰處雷達與PIV量測水面流場之比較 132 圖6-8 高屏攔河堰於象神颱風時能量坡降與Fr之關係 133 圖6-9 雷達遙測流量結果與攔河堰當地的水位-流量率定關係之比較 134 圖6-10 五堵(實踐橋)測站處計算之河床粗糙長度隨橫向位置的變化 136 圖6-11 介壽橋測站處計算之河床粗糙長度隨橫向位置的變化 136 圖6-12 平水期基隆河微波雷達與第十河川局量測之流量結果比較 139 圖6-13 7月10日娜克莉颱風來襲時五堵水位站之水位歷線 139 圖6-14 五堵水位站推估斷面變化與實測斷面之差異 140 圖6-15 瑞峰橋上游推估斷面變化與實測斷面之差異 141 圖6-16 五堵測點與百福社區洪水觀測站之位置 142 圖6-17 娜克莉颱風時於五堵(百福社區)之水位歷線與流量歷線關係 143 圖6-18 五堵水位-流量歷線與娜克莉颱風觀測之水位流量關係比較 144 圖6-19 辛樂克颱風期五堵(百福社區)與五堵水位站水位流量之關係 145 圖6-20 辛樂克颱風期五堵測站水位與流量歷線的關係 146 圖6-21 辛樂克颱風期五堵測站(百福社區)平均流速與大直水位歷線關係 146 圖6-22 五堵(百福社區)辛樂克颱風時推估河床斷面與實測斷面比較 147 圖6-23 基隆河大直水位站漲潮時水面流速量測結果 149 圖6-24 基隆河大直水位站退潮時水面流速量測結果 150 圖6-25 濁水溪主流與陳有蘭溪交匯口下游微波雷達測點 151 圖6-26 濁水溪與陳有蘭溪交匯口龍神橋下游測點之水面流速量測結果 152 表目錄 表2-1 流量量測方法之比較 25 表3-1 由底床質決定之粗糙長度公式類別 57 表5-1 RiverRAD微波水面流速儀的雷達規格 103 表6-1 流量雷達遙測結果及與流量率定曲線之比較 134 表6-2 基隆河雷達測量時間及位置 137 表6-3 基隆河雷達流量量測與十河局流速儀吊測流量之比較 138

    1. Adler, M. and U. Nicodemus (2001), “A new Computer model for the Evaluation of data from Acoustic Doppler Current Profilers,” Phys. Chem. Earth (C), Vol. 26, No. 10-12, pp. 711-715.
    2. Adrian, R. J. (1991), “Particle-imaging techniques for experimental fluid mechanics,” Ann. Rev. Fluid Mech., 23, pp. 261-204.
    3. Barrick, D. E. (1972), “First-order Theory and Analysis of MF/HF/VHF Scatter from the Sea,” IEEE Trans. Antennas Propag., AP-20, pp. 2-10.
    4. Barrick, D. E., M. W. Evans and B. L. Weber (1977), “Ocean Surface Currents mapped by Radar,” Science, Vol.198, pp. 138-144.
    5. Bass, F. G., I. M. Fuks, A. I. Kalmykov, I. E. Ostrovsky, and A. D. Rosenberg (1968), “Very High Radiowave Scattering by a Disturbed Sea Surface, II, Scattering from an actual sea surface,” IEEE Trans. Antennas Propag., AP-16, pp. 560-568.
    6. Blasius, H. (1913), “Das Ähnlichkeitsgestz bei Reibungsvorgängen in Flüssigkeiten,” Forschungsheft des vereins deutscher Ingenieure, No. 131, Berlin, Germany. (in German)
    7. Bompais, X., M. L. Boulluec, F. Dekindt, S. Marin, B. Molin (1994)“Slow-drift motion: Practical Estimation of Mooring line Damping”, OMAE Vol. I, Offshore Technology ASME.
    8. Bray, D. I. (1979), “Estimating average Velocity in Gravel-bed Rivers,” J. Hydr. Div., ASCE, Vol. 105, No. 9, pp. 1103-1122.
    9. Bray, D. I. (1982), “Flow resistance in Gravel-bed Rivers,” In Gravel-Bed Rivers, pp. 109-133, Hey, R. D., Bathurst, J. C., and C. R. Thorne (Eds.). John Wiley and Sons, Chichester, England.
    10. Broche, P., M. Crochet, J. C. Demaistre, J. L. Devevon, and P. Forget (1987), “VHF Radar for Ocean Surface Current and Sea state Remote Sensing,” Radio Sci., Vol. 22, pp. 69-75.
    11. Cardoso, A. H., W. H. Graf, and G. Gust (1989), “Uniform Flow in a Smooth Open Channel,” J. Hydraul. Res., Vol. 27, No. 5, pp. 603-616.
    12. Carr, J. J. (1994), “Practical Antenna Handbook,” TAB Books, Blue Ridge Summit, PA.
    13. Cebeci, T. and A. M. O. Smith (1974), “Analysis of turbulent boundary layers,” Chapter 6, Academic Press.
    14. Charlton, F. G., P. M. Brown, and R. W. Benson (1978), “The Hydraulic Geometry of some Gravel Rivers in Britain,” Rept. IT 180, Hydr. Res. Station, Wallingford, England.
    15. Chen, C. L. (1989), “Power law of flow resistance in open channels: Manning’s formula revisited,” Proc. Int. Conf. on Channel Flow and Catchment Runoff: Centennial of Manning’s Formula and Kuichling’s Rational Formula, ASCE et al., pp.817-848.
    16. Chen, C. L. (1991), “Unified theory on Power law for Flow resistance,” J. Hydraul. Eng., Vol. 117, No. 3., pp. 371-389.
    17. Chen, C. L. (1992), “Momentum and Energy coefficient based on Power-law Velocity Profile,” J. Hydraul. Eng., Vol. 118, No.11, pp. 1571-1583.
    18. Chiu, C. L. (1987), “Entropy and 2-D Velocity distribution in Open Channel,” J. Hydraul. Eng., Vol. 114, No. 7, pp. 738-755.
    19. Chiu, C. L., and C. A. Said (1995), “Maximum and Mean Velocity and Entropy in Open-Channel Flow,” J. Hydraul. Eng., Vol. 121, No. 1, pp. 26-35.
    20. Chow, V. T. (1959), “Open Channel Hydraulic,” McGraw-Hill Book Co., Inc. New York.
    21. Chow, V. T. (1964), “Handbook of Applied Hydrology”, McGraw-Hill Book Co., Inc. New York.
    22. Coles, D. (1956), “The law of wake in the Turbulent Boundary Layer,” Journal of Fluid Mech., No. 1., pp. 191-226.
    23. Coleman, N. L. (1981), “Velocity Profiles with Suspended Sediment,” J. Hydraul. Res., Vol. 19, No. 3, pp. 211-229.
    24. Coleman, N. L. and C. V. Alonso (1983), “Two-dimensional Channel Flows over Rough Surface,” J. Hydraul. Eng., Vol. 109, No. 2, pp. 175-188.
    25. Costa, J. E., K. R. Spicer, R. T. Cheng, F. P. Haeni, N. B. Melcher, E. M. Thurman, W. J. Plant, and W. C. Keller (2000), “Measuring Stream Discharge by Non-contact Methods: A Proof-of-concept Experiment.” Geophy. Res. Let., Vol. 27, No. 4, pp. 553-556.
    26. Crombie, D. D. (1955), “Doppler Spectrum of Sea Echo at 13.56 Mc/s,” Nature, Vol. 175, pp. 681-682.
    27. Dabiri, D., M. Gharib (1991), “Digital Particle Image thermometry: The method and implementation,” Exp. Fluids 11, pp.77-86.
    28. Darby, Stephen E. and C. R. Thorne (1996), “Predicting Stage-Discharge curves in Channels with Bank Vegetation,” J. Hydraul. Eng., Vol. 122, No. 10, pp. 583-586.
    29. Einstein, H. A. (1950), “The Bed-load function for Sediment Transportation in Open Channel Flows,” USDA, Soil Conservation Service, Technical Bulletin, No. 1026, pp. 1-71.
    30. Einstein, H. A. and N. Barbarossa (1952), “River Channel Roughness,” Trans. ASCE, Vol. 117, pp. 1121-1146.
    31. Engelund, F. (1966), “Hydraulic resistance of alluvial,” Proc. of ASCE, Vol. 92, No. HY2, pp. 315-326.
    32. Engelund, F. and E. Hansen (1972), “A Monograph on Sediment Transport in Alluvial Streams,”Teknisk Forlag, Copenhagen, p.62.
    33. Estournel, C., P. Broche, P. Marsalex, J.-L. Devenon, F. Auclair and R. Vehil (2001), “The Rhone river plume in unsteady condition: Numerical and Experimental Results,” Estuarine, Coastal and Shelf Science Vol. 53, pp. 25-38.
    34. Falkner, E. (2002), “Aerial mapping- Method and Application,” Lewis publishers.
    35. Ferro, V. and G. Baiamonte (1994), “Flow Velocity Profiles in Gravel-Bed Rivers,” J. Hydraul. Eng., Vol. 120, No. 1, pp. 60-80.
    36. Fujita, I., M. Muste, and A. Kruger (1998), “Large-Scale Particle Image Velocimetry for Flow analysis in Hydraulic Engineering Applications”, J. Hydraul. Res., Vol. 36, NO. 3, pp. 397-414.
    37. Fukuoka, S., K. Fujita, and T. Araki (1988), “Improvement of Aerial Survey Technique for Analysis of Flood Flow,” Proc. 32nd Japanese Conference on Hydraulics, pp. 341-346. (in Japanese)
    38. Fukuoka, S., A. Takahashi, K. Fujita, A. Watanabe, K. Hirabayashi, A. Sakano, K. Morita, H. Kagaya, M. Hayashi, and K. Hasegawa (1989), “Prediction of Flood Flow Profiles in River Course with Luxuriant Vegetations,” Proc. 33rd Japanese Conference on Hydraulics, pp. 295-300. (in Japanese)
    39. Geernaert, G. L. and W. J. Plant (1990), “Surface Waves and Fluxes: Current Theory and Remote Sensing,” Kluwer Academic Publishers.
    40. Gibbings, J. C. (1996), “On the measurement of Skin Friction from the Turbulent Velocity Profile,” Flow. Meas. Instrum., Vol. 7, No.2, pp. 99-107.
    41. Gordon, R. L. (1989), “Acoustic measurement of River discharge,” J. Hydrau Eng., Vol. 115, No. 7, pp. 925-936.
    42. Griffiths, G. A., (1981), “Flow Resistance in Coarse Gravel-bed Rivers,” J. Hydr. Div., ASCE, Vol. 107, No. 7, pp. 899-918.
    43. Gui, L., J. Longo, and F. Stern (2001), “Biases of PIV measurement of Turbulent Flow and the masked Correlation-based Interrogation Algorithm”, Exp. Fluids 30, pp. 27-35.
    44. Hickey, K. J., E. W. Gill, J. A. Helbig, and J. Walshb (1994), “Measurement of Ocean Surface Currents using a Long-range, High-Frequency Ground Wave Radar,” IEEE J. Oceanic Eng., Vol. 19, pp. 549-554.
    45. Hirsa, A. H., M. J. Vogel, and J. D. Gayton (2001), “Digital Particle Velocimetry Technique for Free-surface Boundary Layer measurement: Application to Vortex Pair Interactions”, Exp. Fluids 31, pp. 127-139.
    46. Hornung, H. G., T. C. Willert, and S. Turner (1995), “The Flow-field downstream of a Hydraulic Jump,” J. Fluid Mech., Vol. 287, pp. 299-316.
    47. Hovanessian, S. A. (1984), “Radar System Design and Analysis,” Artech house, Inc.
    48. Huang, H, D. Dabari, and M. Gharib (1997), “On errors of Digital Particle Image Velocimetry,” Meas. Sci. Technol. 8, pp. 1427-1440.
    49. Huang, H, H. Fiedler, and J. Wang (1993), “Limitation and Improvement of PIV. II. Particle Image Distortion, a novel technique,” Exp. Fluids 15, pp. 263-273.
    50. Kellerhals, R. (1967), “Stable Channels with Gravel-Paved Beds,” Proc. of ASCE, Vol. 93, No. WW1, pp. 63-84.
    51. Keshavarzy, A. and J. E. Ball (2000), “An application of Image Processing in the Study of Sediment,” J. Hydraul. Res., Vol. 37, No. 4, pp. 559-577.
    52. Keulegan, G.H., (1938), “Laws of Turbulent Flow in Open Channels,” Research Paper RP1151, J. Res. U.S. National Bureau of Standards, Vol. 21, pp. 707-741.
    53. Kinoshita, R. (1991), “航空寫真による洪水流解析の現狀と今後の課題” Proc. of JSCE, No. 345, pp. 1-19. (in Japanese)
    54. Kinoshita, R., T. Utami, and T. Ueno (1990), “Image Processing Aerial Photographs of Flood Flow,” Photo surv. remote sens., Vol. 29, No. 6, pp. 4-17..
    55. Kinoshita, R., T. Utami, and T. Ueno (1992), “ Flood Analysis by the Picture Processing of Aerial Photographs – on the Parallel Cycloidal Flow in the Agano River,” Pro Hydraul. Eng., Vol. 36, pp. 181-186.
    56. Kouwen, N. (1988) ‘‘Field Estimation of the Biomechanical Properties of Grass,” J. Hydraul. Res., Vol. 26, No. 5, pp. 559-568.
    57. Kouwen, N. and M. F. Moghadam (2000), “Friction Factors for Coniferous trees Along Rivers,” J. Hydraul. Eng., Vol. 126, No. 10, pp. 732-740.
    58. Kurada, S., G. W. Rankin, and K. Sridhar (1997), “A new Particle Image Velocimetry Technique for Three-Dimensional Flows,” Opt. Lasers Eng., 28, pp. 343-376.
    59. Lacey, G. (1935), “Uniform Flow in alluvial Rivers and Canals,” Minutes of Proc. Instn. Civ. Engrs., 237, pp. 421-453.
    60. Lee, M.-C., C.-J. Lai, J.-M. Leu, W.J. Plant, W.C. Keller, and K. Hayes (2002), “Non-contact Flood Discharge measurements using an X-band Pulse Radar (I) Theory,” Flow. Meas. Instrum., Vol. 13/5-6, pp. 265-270.
    61. Lee, M.-C., J.-M. Leu, C.-J. Lai, W. J. Plant, W. C. Keller, and K. Hayes (2002), “Non-contact Flood Discharge measurements using an X-band Pulse Radar (II) Improvements and Applications,” Flow. Meas. Instrum., Vol. 13/5-6, pp. 271-276.
    62. Leopold, L, B., M. G. Wolman, and J. P. Miller (1964), “Fluvial Processes in Geomorphology,” W. H. Freeman, San Francisco, California.
    63. Leu, J.-M., M.-C. Lee, C.-J. Lai, W. J. Plant, W. C. Keller, and K. Hayes (2001), “Development of Remote Sensing Technique for River Flow measurement”, Proceedings of the 3rd International Symposium on Environmental Hydraulics.
    64. Limerinos, J. T. (1970), “Determination of the Manning Coefficient for measured Bed Roughness in Natural Channels,” Water Supply Paper, 1898-B. US Geol. Surv., Washington DC.
    65. Lloyd, P. M., D. J. Ball, and P. K. Stansby (1995), “Unsteady Surface-Velocity Field measurement using Particle Tracking Velocimetry,” J. Hydraul. Res., Vol. 33, No. 4, pp. 519-534.
    66. Manning, R. (1895), “Supplement to on the flow of water in open channels and pipes,” Trans., Institution of Civil Engineers of Ireland, 24, pp. 179-207.
    67. Meyer-Peter, E. and R. Muller (1948),“Formulas for Bed Load Transport,”Proc. 3rd IAHR Meeting, Stockholm, pp. 39-64.
    68. Millar, R. G. (1999), “Grain and From Resistance in Gravel-bed Rivers,” J. Hydraul. Res., Vol. 37, No. 3, pp. 303-312.
    69. Moody, J. A. and B. M. Troutman (1992), “Evaluation of the depth-integration method of measuring water discharge in large river,” J. Hydrol., 135, pp. 201-236.
    70. Nadai, A., K. Hiroshi, M. Masafumi, and S. Shinichi (1999), “Measurement of Ocean Surface Currents by the CRL HF Ocean Surface Radar of FMCW type. Part2. Current Vector,” J. oceanogr., Vol. 55, pp. 13-30.
    71. Nathanson, F. E., J. P. Reilly, and M. N. Cohen (1991), “Radar Design Principles -Signal Processing and Environment,” McGraw-Hill, Inc.
    72. Nezu, I. and H. Nakagawa (1993), “Turbulence in open channel Flows,” IAHR Monograph Series, A. A. Balkema Publishers, Rotterdam, Netherlands.
    73. Nezu, I. and H. Nakagawa (1995), “Turbulence measurements in Unsteady Free Surface Flows,” Flow. Meas. Instrum., Vol. 6, No. 1, pp. 49-59.
    74. Nezu, I., and W. Rodi (1986),“Open-Channel Flow measurement with a Laser Doppler Anemometer,”J. Hydraul. Eng., Vol. 112, No. 5, pp. 335-355.
    75. Nikuradse, J. (1932),“Gestzmassigkeiten der turbulenten Stromung in glatten Rohren,”Ver. Deut. Ing. , Forschungsheft 356.
    76. Peters, N. J. and R. A. Skop (1997), “Measurements of Ocean Surface Current from a Moving Ship Using VHF Radar,” J. Atmos. Ocean. Technol., Vol.14, pp. 676-694.
    77. Plant, W. J. (1987),“The Microwave measurement of Ocean-wave directional Spectra,”Johns Hopkins APL Technical Digest, Vol. 8, No. 1.
    78. Plant, W. J. and W. C. Keller (1990),“Evidence of Bragg Scattering in Microwave Doppler Spectra of Sea return,”J. Geophys. Res., Vol. 95, No. C9, pp. 16,299-16,310.
    79. Plant, W. J. (1997), “A model for Microwave Doppler Sea return at High incidence Angles: Bragg Scattering from Bound tilted Waves,” J. Geophys. Res., 102/C9, pp. 21131-21146.
    80. Plant, W. J, W. C. Keller, K. Hayes, and K. Spicer (2003), “Streamfloe Properties from Surface Velocity, Stage, and Depth,” (Preparing)
    81. Prandle, D. (1987), “The Fine-Structure of Near-shore Tidal and Residual Circulations Revealed by HF Radar Surface Current measurements,” J. Phys. Oceanogr., Vol. 17, pp. 231-245.
    82. Prandtl, L. (1925), “Bericht Uber Untersuchungen Zur Aubgebildeten Turbulenz,” Z. Angew. Math. Mech., Vol. 5, No. 2, p. 136.
    83. Riggs, H. C. (1973), “Method of measuring and Computing Flood Discharges,” IAHR, International Symposium on River Mechanics, pp. B2-1-10, Bangkok, Thailand.
    84. Sarma, K. V. N., P. Lakshminarayana, and N. S. L. Rao (1983), “Velocity distribution in smooth rectangular open channels,” J. Hydraul. Eng., Vol. 109, No. 2, pp. 271-289.
    85. Simons, D. B. and E. V. Richardson (1966), “Resistance to Flow in Alluvial Channels,”, Prof. Paper 422-J, US Geol. Surv..
    86. Schott, F., A. S. Frisch, K. Leaman, G. Samuels, and I. P. Fotiro (1985), “High-frequency Doppler Radar measurement of Florida Current in Summer 1983,” J. Geophys. Res., Vol. 90, pp. 9006-9016.
    87. Schultz, G. A. (1996), “Remote Sensing Application to Hydrology: Runoff,” Hydrol. Sci. J., 41, pp. 453-475.
    88. Shay, L.K., H. C. Graber, D. B. Ross, and R. D. Chapman (1995), “Mesoscale Ocean Surface Current Structure Detected by High-Frequency Radar,” J. Atmos. Ocean. Technol., Vol. 14, pp. 881-900.
    89. Shields, A. (1936), “Anwendung der Aechlichkeits-Mechanik und der Turbulenzforschung auf die Geschiebewegung,” Mitt. Preussische Versuchsanstalt für Wasserbau und Schiffbau, Berlin. (in German)
    90. Simpson, M. R. and R. N. Oltmann (1993), “Discharge-measurement system using an Acoustic Doppler Current Profiler with applications to large Rivers and Estuaries,” US Geol. Surv. Water-Supply Paper 2395, 32 pp.
    91. Smith, W. (1971), “Techniques and Equipment required for Precise Stream Gaging in Tide-affected Fresh-water reaches of the Sacramento River, California,” U.S. Geol. Surv. Water-Supply Paper 1869-G, 46 pp.
    92. Smoot, G. F. and C. E. Novak (1969), “Measurement of Discharge by the Moving-boat method,” US Geol. Surv. Techniques of Water-Resources Invest. , Book 3, pp. 22.
    93. Song, T., W. H. Graf and U. Lemmin (1994), “Uniform Flow in Open Channels with Movable Gravel bed,” J. Hydraul. Res., Vol. 32, No. 6, pp. 861-876.
    94. Song, T. and W. H. Graf (1996), “Velocity and Turbulence distribution in Unsteady Open-Channel Flows,” J. Hydraul. Eng., Vol. 122, No. 3, pp. 141-155.
    95. Spicer, K. R., J. E. Costa, and G. Placzek (1997), “Measuring Flood Discharge in Unstable Stream Channels using Ground-Penetrating Radar,” Geology, 25, pp. 423-426.
    96. Steffler, P. M., N. Rajaratnam, and A. W. Peterson (1985), “LDA Measurements in Open Channels”, Proc. ASCE, J. Hyd. Div., Vol. 111, No. 1, pp. 117-130.
    97. Stevens, C. and M. Coates (1994), “Applications of a Maximized Cross -correlation Technique for resolving Velocity Fields in Laboratory Experiments,” J. Hydraul. Res., Vol. 32, No. 2, pp. 195-212.
    98. Stewart, R. H. and J. W. Joy (1974), “HF Radio measurement of Surface Current,” Deep-Sea Research, Vol. 21, pp. 1039-1049.
    99. Strickler, K. (1923),“Beiträge Zur Frage der Geschwindigkeitsformel und der Raukigeitszahlen Fur Strom Kanäle und Geschlossene Leitungen,”Mitteilung No. 16, des Eidenőssische Amtes fur Wasser Wirtschaft, Bern, Switzerland.
    100. Toni, S. (1999), “Digital Photogrammetry”, Volume I, TerraScience.
    101. Tracy, H. J. and C. M. Lester (1961), “Resistance Coefficients and Velocity Distribution in Smooth Rectangular Channel,” U.S. Geol. Surv. Water-Supply Paper 1592-A, Washington, D.C..
    102. Utami, T. and R. E. Blackwelder (1991), “A Cross-correlation Technique for Velocity Field extraction from Particulate Visualization”, Exp. Fluids 10, pp. 213-223.
    103. Van Driest, E. R. (1956), “On Turbulent Flow near a Wall,” J. Aero. Sci., Vol. 23, pp. 1007 -1011.
    104. Wang, X. K., Z. Y. Wang, M. Z. Yu, and D. Li (2001), “Velocity Profile of Sediment Suspensions and Comparison of Log-law and Wake-law,” J. Hydraul. Res, Vol. 39, No. 3, pp. 211-217.
    105. Weitbrecht, V., G. Kühn, and G. H. Jirka (2002), “Large Scale PIV- measurement at the Surface of Shallow Flows,” Flow. Meas. Instrum. 13, pp. 237-245.
    106. Wereley, S. T. and L. Gui (2003), “Correlation-based Central Difference Image Correction (CDIC) method and application in a Four-roll mill Flow PIV measurement,” Exp. Fluids 34, pp. 42-51.
    107. Westerweel, J., D. Dabiri, and M. Gharib (1997), “The Effect of Discrete windows offset on the Accuracy of Cross-correlation Analysis of Digital PIV Recording,” Exp. Fluids 23, pp. 20-28.
    108. Willert, C. (1996), “The Fully Digital Evaluation of Photographic PIV Recordings,” Appl. Sci. Res. 56, pp. 79-102.
    109. Willert, C. E. and M. Gharib (1991), “Digital Particle Image Velocimetry”, Exp. Fluids 10, pp. 181-193.
    110. Williams, G. S. and A. Hazen (1933), “Hydraulic tables,” 3rd Ed., John Wiley and Sons, Inc., New York, N. Y..
    111. Wohl, E. E. (1998), “Uncertainty in Flood Estimates associated with Roughness Coefficient,” J. Hydraul. Eng., Vol. 124, No. 2, pp. 219-223.
    112. Wozniak, K., G. Wozniak, and T. Rösgen (1990), ”Particle Image Velocimetry applied to Thermo-capillary Convection”, Exp. Fluids 10, pp. 12-16.
    113. Wright, J. W. and W. C. Keller (1971), “Doppler Spectra in Microwave Scattering from Wind Waves”, Phys. Fluid, 14, pp. 466-473.
    114. Wright, J. W. (1966), “Backscattering from Capillary Waves with application to Sea Clutter,” IEEE Trans. Antennas Propag., AP-14, pp. 749-754.
    115. Xia R. (1997), “Relation between Mean and Maximum velocities in a natural River”, J.Hydr. Engrg. ASCE, Vol. 123, No. 8, pp. 720-723.
    116. Xu, J. P. and L. D. Wright (1995), “Tests of bed Roughness models using Field data from the Middle Atlantic Bight, ” Continental Shelf Research, 15, pp. 1409-1434.
    117. Yamaguchi, T. (2002), “洪水流速および流量觀測─その1─,” Journal of Japan Soc. Hydrol. & Water Resour. Vol. 15, No. 6, pp. 625-635. (in Japanese)
    118. Yamaguchi, T. and K. Niizato (1994),“Flood Discharge Observation using Radio Current meter,”Doboku Gakkai Rombun-Hokokushu/ Proc. of JSCE, No. 497 pp. 41-50.
    119. Yasuyuki, S., W. Yasuharu, and Y. Shoji (1993), “Observation of Flood and River bed Evolution,” J. Hydro-Sci. Hydraul. Eng. Special Issues, pp. 141-160.
    120. Yorke, T. H. and K. A. Oberg (2002), “Measurement River Velocity and Discharge with Acoustic Dopple Profilers,” Flow. Meas. Instrum., Vol. 13, pp. 191-195.
    121. Zhan, Y. W. (1986), “Optical measurement of Velocity and Acceleration with Color Coding,” Opt. Lasers, 18, pp. 255-258.
    122. Zippe, H. J. and W. L. Graf (1983), “Turbulent Boundary layer Flow over Permeable and Non-permeable Rough Surface,” J. Hydraul. Res., Vol. 21, No. 1., pp. 51-65.
    123. Гοнчаров, B.H. (1962), “Основы личамики русловых потоков Гидрометеор иэд.,” Лениград.
    124. Шамов, Г.И., (1952) “Формулы для Определения Предельной скорости и расходов донних наносов,” труды Государственного Гидрологического Инст., вып. 36.
    125. 王如意、易任 (1979),「應用水文學」,國立編譯館出版。
    126. 李明靜,賴泉基 (2000),「由水面流速分布推定河川斷面水深及流量之研究」,中國土木水利工程學刊,第十二卷,第四期,第777頁至783頁。
    127. 李明靜、許毅然、賴泉基、呂珍謀 (2001),「河川測流自動化-水深平均流速之繩索直接量測法」,中華民國第十二屆水利工程研討會,國立成功大學,台南市,第C7-C13頁。
    128. 吳時光、周源華、餘松煜 (1993),「數位影像處理」,儒林圖書公司。
    129. 吳慶現、張耀澤、陳義平、蔡長泰、李鴻源(1994),「高屏溪下游攔河堰工程細部規劃」,台灣省水利局規劃總隊。
    130. 馬志欽 (1962),「雷達原理」,交通部交通研究所。
    131. 盧召堯 (1997),「台灣河川流量觀測技術之開發與應用」,國立中興大學土木工程學系,台灣省水利處。
    132. 賴泉基、呂珍謀、李明靜 (2001),「河川流量遙測技術的發展與應用」,經濟部水利處規劃試驗所,國立成功大學水利及海洋工程學系九十年度學術研究成果雙邊論文研討會,台南市,第35-43頁。
    133. 賴泉基 (1998),「應用微波雷達系統於河道水面流速及流量之量測」,行政院國家科學委員會第三十五屆出國研究進修人員研究進修報告書,台南。
    134. 賴泉基、呂珍謀、許毅然、李明靜 (2000),「高效率流量測量示範站之建置運作(1 / 2)」,行政院經濟部水利署委辦計畫計畫成果報告。
    135. 賴泉基、呂珍謀、許毅然、李明靜 (2002),「高效率流量測量示範站之建置運作(2 / 2)」,行政院經濟部水利署委辦計畫計畫成果報告。
    136. 賴泉基、呂珍謀、許毅然、李明靜 (2002),「基隆河系流量自動觀測技術之研發」,行政院經濟部水利署第十河川局委辦計畫計畫成果報告。
    137. 賴泉基、許毅然、李明靜 (2001),「洪水期河川流量遙測方法研究(III)」,行政院國家科學委員會計畫研究成果報告,計畫編號:NSC 89-2211-E-006-169。
    138. 錢寧、萬兆惠 (1991),「泥沙運動力學」,科學出版社,北京,第206-209頁。
    139. 蘇藤成(1986),「台灣西部河川輸沙量推估研究─洪水期高流速情況下泥沙施測作業方法及設備改善措施」,經濟部水資源統一規劃委員會,經濟部七十五年度研究發展專題。

    下載圖示 校內:立即公開
    校外:2003-07-14公開
    QR CODE