簡易檢索 / 詳目顯示

研究生: 游宗憲
You, Zong-Xian
論文名稱: Metal-phthalocyanines有機薄膜電傳輸性質及發光元件光電特性之研究
The researches on the electrical transport properties of metal-pc thin film and optoelectric characteristics of metal-pc based light-emitting devices.
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 81
中文關鍵詞: 電特性有機發光二極體
外文關鍵詞: OLED, the electrical transport properties
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於CuPc 可扮演緩衝層和電洞注入層的角色,改善有機材料的發光薄膜穩定性不足的問題,並使得電洞的注入效率得到改善,讓更多的電子電洞能夠產生再結合,進而達到效能的增加,所以在本研究中,我們使用Metal-Pc電洞注入層來製作有機發光二極體,探討其他Metal-Pc是否也能改善元件效能。
      本論文主要分為二大部分,第一部份針對 Metal-Pc 單層薄膜將其製成簡單的三明治結構做直流電特性量測,研究其電荷注入、傳輸機制、移動率μp、陷阱濃度Nt、跟電洞濃度p0。第二部份我們將Metal-Pc當作電洞注入層製作成OLED元件,先由CuPc所求得之最佳膜厚(10nm)套用到各Metal-Pc,元件結構ITO/Metal-Pc(10nm)/NPB(60nm)/Alq3(75nm)/LiF/Al,探討不同 Metal-Pc對元件效能之影響。
      由實驗結果發現:HOMO值接近ITO電極費米能階的Metal-Pc分子可改善電洞注入效率;遷移率小、陷阱濃度低、電洞載子少的Metal-Pc分子可增加元件的發光效率。

      Since CuPc films play the role of the buffer-layer and the hole-injection layer, improve the problem of OLEDs that the stability of emitting films are insufficient and improve the hole-injecting efficiency for more electron-hole to recombine and enhance the performance of OLEDs. In this study, we fabricate OLEDs with Metal-Pcs as an hole-injection layer to investigate their performance.
      In the first phase of this research, we make the sample with sandwich structure, ITO/Metal-Pc/cathode. We measure the carrier injecting, transport mechanism, mobility, trap concentration, and hole concentration. Then, we find the preferred thickness of Metal-Pc, to fabricate this structure’s OLEDs, ITO/Metal-Pc(10nm)/NPB(60nm)/Alq3(75nm)/LiF/Al.
      In this study, we find that as the Metal-Pcs’ HOMO are closed to ITO’s EF(5.0eV) , hole-injecting efficiency can be improved. The smaller mobility, trap concentration, and hole concentration of Metal-Pc can enhance devices’ luminous efficiency.

    目錄 中文摘要……………………………………………………………………Ⅰ 英文摘要……………………………………………………………………Ⅱ 誌謝…………………………………………………………………………Ⅲ 目錄…………………………………………………………………………Ⅳ 表目錄………………………………………………………………………Ⅷ 圖目錄………………………………………………………………………Ⅸ 第一章 導論…………………………………………………………………1 1-1前言………………………………………………………………………1 1-2CuPc 運用之文獻回顧 …………………………………………………2 1-3研究動機與目的…………………………………………………………3 第二章 理論基礎……………………………………………………………5 2-1單層元件的電特性………………………………………………………5 2-1-1電荷注入………………………………………………………………6 2-1-1-1熱激發………………………………………………………………6 2-1-1-2穿隧效應……………………………………………………………6 2-1-2電荷傳播 ……………………………………………………7 2-1-2-1歐姆傳導……………………………………………………………7 2-1-2-2 空間電荷限制傳導 ………………………………………………8 2-2螢光理論與元件的基本結構 …………………………………………13 2-3有機材料的介紹 ………………………………………………………18 2-3-1電洞注入材料 ………………………………………………………18 2-3-2電洞傳輸材料 ………………………………………………………18 2-3-3電子傳輸材料及發光層主體材料 …………………………………18 2-3-4電子傳輸層的材料 …………………………………………………19 2-3-5低功函數負電極 ……………………………………………………19 2-4元件衰減機制 …………………………………………………………20 第三章 實驗步驟與方法 …………………………………………………22 3-1前言 ……………………………………………………………………22 3-2真空熱蒸鍍系統設備(Thermal evaporation system) ……………22 3-3實驗材料 ………………………………………………………………22 3-4 ITO基板前處理之實驗步驟 …………………………………………23 3-5真空蒸鍍之實驗步驟 …………………………………………………25 3-6單體沉積速率之測定 …………………………………………………26 3-7單層元件之阻抗、電流與電壓關係曲線圖量測 ……………………26 3-8 OLED多層元件之電流、電壓與亮度關係曲線圖量測………………26 第四章 結果與討論 ………………………………………………………27 4-1單層元件 ………………………………………………………………27 4-1-1 CuPc單層元件………………………………………………………27 4-1-1-1單層元件ITO/CuPc/Au……………………………………………28 4-1-1-2單層元件ITO/CuPc/Al……………………………………………29 4-1-2 SnPc單層元件………………………………………………………29 4-1-2-1單層元件ITO/SnPc/Au……………………………………………29 4-1-2-2單層元件ITO/SnPc/Al……………………………………………30 4-1-3 NiPc單層元件………………………………………………………30 4-1-3-1單層元件ITO/NiPc/Au……………………………………………30 4-1-3-2單層元件ITO/NiPc/Al……………………………………………30 4-1-4 ZnPc單層元件………………………………………………………31 4-1-4-1單層元件ITO/ZnPc/Au……………………………………………31 4-1-4-2單層元件ITO/ZnPc/Al……………………………………………31 4-2電洞注入層對元件特性的影響 ………………………………………31 4-2-1 CuPc電洞注入層厚度對元件特性的影響…………………………31 4-2-2不同Metal-Pc當電洞注入層對元件特性的影響 …………………34 第五章結論與未來展望……………………………………………………37 5-1結論 ……………………………………………………………………37 5-2未來展望 ………………………………………………………………37 參考文獻……………………………………………………………………39 附圖…………………………………………………………………………46 附表…………………………………………………………………………75

    [1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. 38 , 2042
    (1963).
    [2] W. Helfrich and W.G. Schneider, Phys. Rev. Lett. 14, 229
    (1965).
    [3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
    K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature,
    347 ,539 (1990).
    [4] Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, L1938(1991).
    [5] Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, L1941(1991).
    [6] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57,
    531 (1990).
    [7] S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett.
    69,2160 (1996).
    [8] C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl.
    Phys. Lett. 67, 3853 (1995).
    [9] J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
    [10] Y. Hamada, H. Kanno, T. tsujioka, H. Takahashi, and T. Usuki,
    Appl. Phys. Lett. 75, 1682 (1999).
    [11] L. S. Hung and C. W. Tang, Appl. Phys. Lett. 74, 3209 (1999).
    [12] H. Riel, W. Brutting , T. Beierlein , E. Haskal , P. Muller ,
    W. Rieß H. Riel et al. Synthetic Metals 111–112,303–306
    (2000).
    [13] Sang Keol Kim, Taek Gyun Chung , Dong Hoe Chung , Ho Sik Lee ,
    Min Jong Song , Jong Wook Park , Joon Ung Lee , Tae Wan Kim ,
    S.K. Kim et al. / Optical Materials 21,159–164 (2002).
    [14] Paulo N.M. dos Anjos, Hany Aziz, Nan-Xing Hu, Zoran D. Popovic
    P.N.M. dos Anjos et al./Organic Electronics 3(2002) 9–13.
    [15] I. D. Park, J. Appl. Phys. 75, 1656 (1994).
    [16] A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C.
    Bradley, J. Appl. Phys. 84, 6737 (1998).
    [17] S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, Phys. Rev.
    B 61, 2151 (2000).
    [18] D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed.,p.
    319.
    [19] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York,
    1981).
    [20] E. H. Rhoderick and R. H. Williams,
    Metal-Semiconductor-Contacts (Clarendon, Oxford, 1988).
    [21] A. J. Champbell and D. D. C. Bradley, J. Appl. Phys. 86, 5004
    (1999).
    [22] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov,and
    J. P. Ferraris, Appl. Phys. Lett. 72, 1863 (1998).
    [23] P. S. Davids, I. H. Campell, and D. L. Smith, J. Appl. Phys.
    82, 6319 (1997).
    [24] R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A
    119, 173 (1928).
    [25] Y. Yang and A. J. Heeger, Appl. Phys. Lett. 64, 1245 (1994).
    [26] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger,
    J. Appl. Phys. 77, 694 (1995).
    [27] H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A.
    Greiner, W. Heitz, and H. Bässler, Synth. Met. 68, 263 (1995).
    [28] P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith,
    Appl. Phys. Lett. 69, 2270 (1996).
    [29] D. V. Khramtchenkov, H. Bässler, and V. I. Arkhipov, J. Appl.
    Phys. 79, 9283 (1996).
    [30] P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl.
    Phys. Lett. 68, 3308 (1996).
    [30] D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys.
    86, 5116 (1999).
    [31] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R.
    Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys.
    79, 7991 (1996).
    [32] S. Karg, M. Meier, and W. Riess, J. Appl. Phys. 82, 1951
    (1997).
    [33] A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl.
    Phys. 82, 6326 (1997).
    [34] M. Dongge, I. A. Hümmelgen, B. Hu, and F. E. Karasz, J. Appl.
    Phys. 86, 3181 (1999).
    [35] Y. He and J. Kanicki, Appl. Phys. Lett. 76, 661 (2000).
    [36] D. Ma, I. A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao,
    F. Wang, and F. E. Karasz, J. Appl. Phys. 87, 312 (2000).
    [37] K. C. Kao, W. Hwang, Electrical Transport in Solids
    (Pergamon, Oxford, 1981).
    [38] N. F. Mott and R. W. Gurney, Electronic Process in Ionic
    Crystals (Dover Publication, New York, 1940).
    [39] W. Helfrich, Physics and Chemistry of the Organic Solid State
    3, 1 (1967).
    [40] M. A. Lambert and P. Marks, Current Injection in Solids
    (Academic, New York, 1970).
    [41] H. C. F. Martens, J. N. Huiberts, and P.W. M. Blom, Appl.
    Phys. Lett. 77, 1852 (2000).
    [42] P. W. M. Blom and M. C. J. M. Vissenberg, Mat. Sci. & Eng.
    27, 53 (2000).
    [43] P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth.
    Met. 121, 1621 (2001).
    [44] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris,
    Appl. Phys. Lett. 74, 2809 (1999).
    [45] J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G.
    Mallianras, S. A. Carter, and L. Bozano, Synth. Met. 111-112,
    289 (2000).
    [46] Kelly, S. M.; Flat Panel Displays Advanced Organic Materials;
    The Royal Society of Chemistry, Cambridge, 2000.
    [47] J. M. Thomas, J. O. Williams, and L. M. Turton, Trans. Faraday
    Soc. 64, 2496 (1968).
    [48] D. F. Williams and M. Schadt, J. Chem. Phys. 53, 3480 (1970).
    [49] P. J. Reucroft and F. D. Mullins, J. Phys. Chem. Solids, 35,
    347 (1974).
    [50] K. Unger, Phys. Stat, Sol. 2, 1279 (1962).
    [51] J. G. Simmons and M. C. Tam, Phys. Rev. B 7, 3706 (1973).
    [52] G. P. Owen, J. Sworakowski, J. M. Thomas, D. F. Williams,
    and J. O. Williams, J. Chem. Soc. Faraday II 70, 853 (1974).
    [53] A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C.
    Bradley, J. Appl. Phys. 84, 6737 (1998).
    [54] M. Koehler, and I. A. Hümmelgen, J. Appl. Phys. 87, 3074
    (2000).
    [55] S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, Phys. Rev.
    B 61, 2151 (2000).
    [56] C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E.
    Thompson, S. R. Forrest, and R. A. Register, Appl. Phys.
    Lett.66, 653 (1995).
    [57] G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. Samuel, A. P.
    Monkman, and M. C. Petty, J. Phys. D: Appl. Phys. 33, 1029
    (2000).
    [58] Y. Sato, S. Ichinosawa, H. Hanai, IEEE Journal of Selected
    Topics in Quantum Electronics 4, 40 (1998)
    [59] E. M Han, L. M. Do, N. Yamamoto, M. Fujihira, Thin Solid Films,
    273, 202 (1996).
    [60] L. Do, E. Han, N. Yamamoto, and M. Fujihira, Mol. Cryst. Liq.
    Cryst. 280, 373 (1996)
    [61] F. Papadimitrakopoulos, X. Zhang, D. L. Thomsen, and K. A.
    Higginson, Chem. Mater. 8, 1363 (1996)
    [62] H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. X. Hu, C. Tripp,
    and G. Xu, Appl. Phys. Lett. 72, 756 (1998)
    [63] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D.
    M. McCarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922
    (1994)
    [64] J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D.
    M. Roitman, J. R. Sheets, and R. L. Moon, J. Appl. Phys. 80,
    6002 (1996)
    [65] H. Aziz and G. Xu, J. Phys. Chem. B 101, 4009 (1997)
    [66] H. Aziz, Z. Popovic, C. Tripp, N. X. Hu, A. M. Hor, and G.
    Xu, Appl. Phys. Lett. 72, 2642 (1998)
    [67] M. Probst, and R. Haight, Appl. Phys. Lett. 70, 1420 (1997)
    [68] M. A. Lampert, Rep. Progr. Phys., 27, 329 (1964)
    [69] A. Ahmed and R. A. Collins, phys. stat. sol. (a), 123, 201
    (1991)
    [70] R. A. Collins and K. A. Mohamad, Thin Solid Flims, 145, 133
    (1986)

    下載圖示 校內:2006-07-05公開
    校外:2007-07-05公開
    QR CODE