簡易檢索 / 詳目顯示

研究生: 黃冠穎
Huang, Guan-Ying
論文名稱: 有效利用能量的逐漸趨近式類比數位轉換器設計
Design of Energy Efficient Successive-Approximation Analog-to-Digital Converter
指導教授: 張順志
Chang, soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 60
中文關鍵詞: 逐漸趨近式類比數位轉換器類比數位轉換器有效利用能量
外文關鍵詞: successive approximation ADC, successive approximation analog-to-digital conve, energy efficient, SAR ADC
相關次數: 點閱:94下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要實現了兩個逐漸趨近式類比數位轉換器。在第一個轉換器中,我們利用調整開關的數量大小來得到新的電阻電容時間常數,藉以提升類比數位轉換器的速度。此外,此一設計使用自我時間控制的方法去控制比較器,這樣可以節省一半左右的功率消耗。實驗結果顯示,利用TSMC 0.13 μm的製程,這個8位元每秒取樣兩千七百萬次的逐漸趨近式類比數位轉換器平均消耗功率為385 μW,每次轉換所消耗的平均能量約為105 fJ。
    於第二個轉換器中,我們採用新的電容串架構,再加上被動式電荷重新分布的機制來提升轉換器的速度,同時降低電容串部分的功率消耗,而且在轉換器輸入端的電容值也可以明顯的減小。這個8位元每秒取樣五千萬次的被動式電荷重新分布逐漸趨近式類比數位轉換器同樣利用TSMC 0.13 μm的製程來進行設計,平均消耗功率為294 μW,每次轉換所消耗平均能量約為41 fJ。

    In this thesis, two successive-approximation (SAR) analog-to-digital converters (ADCs) are proposed. In the first ADC, a novel RC time constant capacitor array, which adjusts the numbers of switch, is used to speed up the conversion rate. And a self timing controller is used to control the comparator, which can save half of the power consumption of the comparator. Simulation results of the first ADC, an 8-bit 27 MS/s SAR ADC, show that the total power consumption is 385 μW and the average energy consumption per conversion step is 105 fJ in the TSMC 0.13 μm process.
    In order to further increase the conversion rate, a novel capacitor array with passive charge-sharing (PCS) technique, which can effectively reduce the total power consumption and the input capacitance, is used in the second ADC. Simulation results of the second ADC, an 8-bit 50 MS/s PCS SAR ADC, show that the total power consumption is 294 μW and the average energy consumption per conversion step is 41 fJ in the TSMC 0.13 μm process.

    Abstract List of Figures List of Tables Chapter 1 Introduction  1.1 Motivation 01  1.2 Energy Efficient of Conventional ADCs 02  1.3 Thesis Organization 03 Chapter 2 The Principle and Architectures of Successive Approximation A/D Converters  2.1 Principle of Successive Approximation Algorithm 05  2.2 The Architecture of Successive Approximation ADC 07   2.2.1 DAC-Based Successive Approximation 07   2.2.2 Unipolar Charge-Redistribution A/D 07   2.2.3 Signed Charge-Redistribution A/D with a Single Reference Voltage 11  2.3 Capacitive Digital-to-Analog Converter 14   2.3.1 Binary-Weighted Capacitor Array 14   2.3.2 C-2C Capacitor Array 15   2.3.3 Pseudo C-2C Capacitor Array 16  2.4 Latched Comparator 18   2.4.1 Static Latched Comparator 19   2.4.2 Class-AB Latched Comparator 20   2.4.3 Dynamic Latched Comparator 21 Chapter 3 An 8-Bit 27MS/s Successive Approximation A/D Converter  3.1 Motivation 22  3.2 The Architecture of Proposed Successive Approximation A/D Converter 23   3.2.1 Sample and Hold 25   3.2.2 Comparator with Rail-to-Rail Range 25   3.2.3 Digital-to-Analog Converter (DAC) 28  3.3 Simulation Results 30   3.3.1 Functional simulation 30   3.3.2 Pre-Layout Simulation Result 31   3.3.3 Post-Layout Simulation Result 35 Chapter 4 Energy Efficient Passive Charge-Sharing (PCS) Successive Approximation A/D Converter  4.1 Motivation 40  4.2 The Architectures of Conventional Passive Charge-Sharing SAR ADC 41   4.2.1 Capacitor Array 43   4.2.2 Comparator 44   4.2.3 Digital Control Circuit 45  4.3 The Architectures of Proposed Passive Charge-Sharing SAR ADC 46   4.3.1 Capacitor Array 48   4.3.2 Comparator 49   4.3.3 Digital Control Circuit 51  4.4 Simulation Results 52   4.4.1 Functional Simulation 52   4.4.2 Pre-Layout Simulation 53 Chapter 5 Conclusion and Future Works  5.1 Conclusion 56  5.2 Future Works 57 Reference

    Reference
    [1]. J. Craninckx, G. van der Plas, ” A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-sharing SAR ADC in 90nm Digital CMOS,” ISSCC Dig. Tech. Papers, pp.246-247 Fed. 2007.

    [2]. N. Verma and A. Vhandrakasan, “A 25mW 100kS/s 12b ADC for wireless Micro-Sensor Applications”, ISSCC Dig. Tech. Papers, pp 222-23, Feb., 2006.

    [3]. S. Chen and R. Brodersen, “A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13 mm CMOS.” ISSCC Dig. Tech. Papers, pp 574-575, Feb., 2006.

    [4]. G. Van der Plas, S. Decoutere and S. Donnay, “A 0.16pF/conversion-step 2.5mW 1.25GS/s 4b ADC in 90nm Digital CMOS Process”, ISSCC Dig. Tech. Papers, pp. 566-567, Feb., 2006.

    [5]. J. L. McCreary et al.,“All-MOS charge redistribution analog-to-digital conversion techniques- Part I .“IEEE J. Solid-State Circuit, VOL SC-10, pp. 371-379, Dec. 1975.

    [6]. Gilbert Promitzer, “12-bit Low-Power Differential Switched Capacitor Non-calibrating Successive Approximation ADC with 1 MS/s, ”IEEE J. Solid-State Circuit, VOL. 36, NO.7, pp.1138-1143, July 2001

    [7]. David A Johns & Ken Martin, “Analog Integrated Circuit Design” John Wiley & Sons, 1997.

    [8]. Lin Cong, “Pseudo C-2C ladder-based data converter technique,” IEEE Trans. Circuits Syst. II, vol.48, pp.927-929, Oct. 2001.

    [9]. Jens Sauerbrey, et al.,”A 0.5V 1-uW successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, pp. 1261-1265, July 2003.

    [10]. Guo-Ming Lee and Hao-Chiao Hong, “ Design of An Ultra-low Power Successive Approximation Analog-to-Digital Converter for Wireless Sensor Networks“ 2006, VLSI CAD,

    [11]. Shuo-Wei Chen “Power Efficient System and A/D Converter Design for Ultra-Wideband Radio” Electrical Engineering and Computer Sciences University of California at Berkeley, PHD. Thesis, May 2006.

    [12]. Y. S. Yee, L. M. Termam, and L. G.. Heller, ”A two-stage weighted capacitor network for D/A-A/D conversion,” IEEE J. Solid-State Circuit, VOL. SC-14, pp. 778-781, August 1979.

    [13]. P. M. Figueiredo and J. C. Vital, “KickBack Noise Reduction Techniques for CMOS Latched Comparators,” IEEE trans. on circuits and systems, vol. 53, no.7, July 2006

    [14]. H. C. Chow, B. W. Chen, H. C. Chen, W. S. Feng, “A 1.8 V, 0.3 mW, 10-bit SA-ADC with new self-timed timing control for biomedical applications” IEEE ISCAS, Circuit and System, VOL .1, pp. 736-739, May 2005.

    [15]. A. S. Sedra and K. C. Smith, “Microelectronic Circuits” 3rd ed. Saunders College Publishing/HRW, NEW Jersey, 1991.

    [16]. 許哲豪 ”12-bit Fully Differential Switched Capacitor Non-calibrating Successive Approximation ADC Using Single Reference Voltage” 成功大學電機工程學系碩士論文, July 2003

    [17]. H. J. M. Veendrick, “The behavior of flip-flops used as synchronizers and prediction of their failure rate," IEEE J. Solid-State Circuits, vol. SC-15, pp. 169-176,
    April 1980.

    [18]. Chi-Sheng Lin; Bin-Da Liu “A new successive approximation architecture for low-power low-cost CMOS A/D converter “IEEE J. Solid-State Circuits, Volume 38, Issue 1, Jan. 2003 Page(s):54 - 62

    [19]. Dabbagh-Sadeghipour, K.; Hadidi, K.; Khoei, A “ A new architecture for area and power efficient, high conversion rate successive approximation ADCs“
    2004 NEWCAS, Circuit and Systems 2004.The 2nd Annual IEEE Northeast workshop on 20-23 June 2004 Page(s):253 - 256

    下載圖示 校內:2008-08-28公開
    校外:2009-08-28公開
    QR CODE