簡易檢索 / 詳目顯示

研究生: 許淑愛
Hsiu, Shu-I
論文名稱: 室溫離子熔液中電沈積碲化鎘及鈀銦合金
Electrodeposition of Cadmium Telluride and Palladium-Indium Alloys in the Room Temperature Ionic Liquid
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 83
中文關鍵詞: 碲化鎘鈀銦合金電沉積離子液體
外文關鍵詞: cadmium telluride, underpotential deposition, ionic liquid, palladium-indium alloy, electrodeposition
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碲化鎘是一熟知的II-VI化合物半導體,可作為光伏特電池中的太陽能轉換材料。本實驗中,選用鹼性的EMI‧Cl‧BF4室溫離子熔液來還原電沉積碲化鎘薄膜。電沉積所得的碲化鎘鍍層組成可藉由改變離子熔液中Cd(II)/Te(IV)的濃度比例與熔液溫度來控制。在含有200mM Cd(II)與0.15mM Te(IV)的離子熔液中,利用定電位在–0.7V 到–0.9V (vs. Al/Al3+)之間去電沉積時,可得到組成中鎘與碲幾乎等量且具有晶形的鍍層。碲化鎘的電沉積行為可藉由UPD(underpotential depostion)機構來解釋。利用離子熔液來取代水溶液的最大優點在於可提高沉積溫度達到140℃,故可得到具有良好晶形的碲化鎘鍍層而無需任何後處理的步驟。

    由於鈀銦合金具有取代鈀或金的潛力,因此已有研究探討鈀銦合金在各種電解液中的電沉積行為。但在水溶液中電沉積鈀鍍層時常會有氫共鍍而造成鍍層碎裂或氫脆的情況,為了避免此問題可選用非質子性的離子熔液。在含有Pd(II)與In(III)的鹼性EMI‧Cl‧BF4室溫離子熔液中去電沉積鈀銦合金時,由能量分散譜儀的結果顯示鈀銦沉積組成可由改變熔液中的Pd(II)與In(III)的濃度來控制,且120℃下、在-0.32V至-0.5V(vs.Al/Al3+)電位區間利用定電位沉積可得到品質良好且具有固定含量的銦的鈀銦鍍層。

    Cadmium telluride (CdTe), a well-known II-VI compound semiconductor﹐is suitable for photovoltaic cells. In this work, cathodic electrodepostion of CdTe flims was studied using a basic 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate ionic liquid. The stoichiometry of electrodeposited CdTe can be controlled by changing the Cd(II)/Te(IV) concentration ratio and temperature of the baths. From the solution, 200mM Cd(II)-0.15mM Te(IV), polycrystalline CdTe with nearly stoichiometric composition was deposited with constant-potential electrolysis between –0.7V and –0.9V vs. Al/Al3+. The depostion behavior was fully explained by an underpotential depostion mechanism. The use of ionic liquid instead of aqueous made it possible to raise the temperature of electrolytic baths to 140℃, resulting in highly crystalline CdTe deposits without any post-treatment under a wide range of experimental conditions.

    Study of the electrochemical deposition of palladium-indium alloys from different electrolytes is of interest, which is due to its potential use as a replacement for gold and palladium electrolytic coating. Due to adsorption of hydrogen, palladium deposits obtained from aqueous electrolyte often associated with problems such as cracking and hydrogen brittle. To avoid such problem, aprotic electrolyte such as ionic liquid can be used. The electrodeposition of a palladium-indium alloy was investigated in a basic 1-ethyl- 3-methylimidazoliumchloride/tetrafluoroborate ionic liquid containing Pd(II) and In(III). Energy-dispersive spectroscopy data indicate that the composition of the Pd-In codeposits can be varied by deposition potential and concentration of Pd(II) and In(III) in the solution. Alloys of good quality with constant indium contents can be deposited over the range of deposition potential from –0.32V to –0.5V vs. Al/Al3+ at 120℃.

    表目錄……………………………………………………iii 圖目錄……………………………………………………iv 符號說明…………………………………………………vii 第一章 緒論……………………………………………1 1-1 室溫離子熔液(Ionic Liquid) ……………………1 1-1-1 室溫離子熔液的發展………………………………1 1-1-2 室溫離子熔液的性質………………………………3 1-1-3 室溫離子熔液在電沉積之應用……………………5 1-2 碲化鎘(Cadmium telluride) ………………………6 1-2-1 碲化鎘的特性與發展………………………………6 1-2-2 電沉積法製備碲化鎘之文獻回顧…………………6 1-2-3 研究動機……………………………………………8 1-3 鈀–銦合金(Palladium–Indium alloy) …………9 1-3-1 鈀–銦合金的特性及發展…………………………9 1-3-2 鈀–銦合金之文獻回顧……………………………10 1-3-3 研究動機……………………………………………10 第二章 相關研究參考資料………………………………13 2-1 藥品……………………………………………………13 2-2 融鹽的配製……………………………………………15 2-2-1 EMI‧Cl‧BF4融鹽…………………………………15 2-2-2 AlCl3–EMIC 融鹽…………………………………16 2-3 ……儀器設備…………………………………………16 第三章 實驗方法及原理…………………………………18 3-1 電化學原理……………………………………………18 3-2 循環伏安法(cyclic voltammetry)………………19 3-3 Chronoamperometry…………………………………20 3-4 旋轉電極伏安法(rotating disk voltammetry)…20 第四章 結果與討論………………………………………22 4–1 碲化鎘於EMI‧Cl‧BF4鹼性室溫融鹽的電化學行為與電沉積 22 4–1–1 氯化碲(IV)的電化學行為………………………22 4–1–2 碲化鎘的電化學…………………………………25 4–1–3 電沉積製備碲化鎘………………………………34 4–2 鈀銦合金於EMI‧Cl‧BF4鹼性室溫融鹽的電化學行為與電沉積46 4–2–1 氯化鈀(II)的電化學行為………………………46 4–2–2 鈀–銦合金的電化學……………………………47 4–2–3 鈀–銦合金的電沉積……………………………58 第五章 結論………………………………………………76 第六章 參考文獻…………………………………………77

    1. C. F. Poole, B. R. Kersten, S. S. J. Ho, M. E. Coddens, K. G. Furton, J. Chromatogr., 352, 407 (1986)
    2. P. H. Shetty, P. J. Youngberg, B. R. Kersten, C. F. Polle, J. Chromatogr., 411, 61 (1987)
    3. V. R. Koch, C. N Anjundiah, R. T. Carline, World Pat., 9702252(1997)
    4. D. R. Macfarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, J. Phys. Chem. B, 103, 4164 (1999)
    5. J. S. Wilkes, Green Chem. 4, 73 (2002)
    6. P. Walden, Bull. Acad. Imper. Sci, 1800 (1914)
    7. J. T. Yoke, J. F. Weiss and G. Tollin, Inorg. Chem. 2, 1210 (1963)
    8. L. A. King, A .D. Brown, F. H. Frayer, Proceedings OAR Research Application Conference, J-1-J-16 (1968)
    9. J. C. Nardi, C. L. Hussey, L. A. King, US Pat., 4 122 245 (1978);R. J. Gale, B. Gilbert, R. A. Osteryoung, Inorg. Chem. 17, 2728 (1978)
    10. J. S. Wilkes, J. A. Levisky, Research Laboratory Technical Report No. FJSRL-TR-81-0001 (1981)
    11. J. S. Wilkers, M. J. Zaworotko, J. Chem. Soc. Chem. Commun., 965 (1992)
    12. J. Fuller, R. T. Carlin, H. C. De Long, D. J. Haworth, J. Chem. Soc. Chem. Commun., 299 (1994)
    13. J. Fuller, R. T. Carlin, J. Chem. Crystallogr., 24, 489 (1994)
    14. J. D. Holbrey, R. D. Rogers, Ionic Liquid in Synthesis, VCH Publisher Inc., New York, p.41-54 (2002)
    15. P. Bonhôte, A. P. Dias, N. Papageogiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 35, 1168 (1996)
    16. J. D. Holbrey, K. R. Seddon, J. Chem. Soc., Dalton Trans., 2133 (1999)
    17. T. Welton, Chem. Rev. 99, 2071 (1999)
    18. J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg.Chem. 21, 1263 (1982)
    19. J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D. Rogers, Chem. Commun., 1765 (1998)
    20. A. E. Visser. R. P. Swatloski, W. M. Reichert, S. T. Griffin. R. D. Rogers, Ind. Eng. Chem. Res. 39, 3596 (2000)
    21. P. A. Suarez, S. Einloft, J. E. L. Dullius, R. F. de Souza, J. Dupont, J. Chem. Phys., 95, 1626 (1998)
    22. J. G. Hunddleston, Ann E. Visser, R. D. Rogers, Green Cehm., 3, 156 (2001)
    23. Paul C. Trulove, Robert A. Mantz, Ionic Liquid in Synthesis, VCH Publisher Inc., New York, pp.107 (2002)
    24. H. Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, Y. Miyazaki, Chem. Lett., 922 (2000)
    25. R. D. Grimm, D. Landolt, Surf. Coat. Technol., 31, 151 (1987)
    26. C. K. Lai, Y. Y. Wang, C. C. Wan, J. Electroanal. Chem., 322, 267 (1992)
    27. F. Endres ChemPhysChem 3, 144 (2002)
    28. S. Takahashi, K. Akimoto, I. Saeki, Hyomen Gijutsu, 40, 134 (1989)
    29. P. K. Lai, M. Skyllas-Kazacos, J. Electroanal. Chem. 248, 431 (1988)
    30. Y. Zhao, T. J. VanderNoot, Electrochim. Acta, 42, 3 (1997)
    31. M. R. Ali, A. Nishikata, T. Tsuru, Indian J.Chem.Technol. 6, 317 (1999)
    32. W. Schindler, D. Hofmann, J. Kirshner, J. Electrochem. Soc. 148, C124, (2001)
    33. J. A. Mitchell, W. R. Pitner, C. L. Hussey, G. R. Stafforrd, J. Electrochem. Soc. 143, 3448 (1996)
    34. W. R. Pitner, C. L. Hussey, G. R. Stafford, J. Electrochem. Soc. 143, 130 (1996)
    35. J. S. –Y. Liu, I. –W. Sun, J. Electrochem. Soc., 144, 140 (1997)
    36. M. Lipsztjan, R. A. Osteryoung, Inorg. Chem., 24, 3492 (1985)
    37. E. G. –S. Jeng, I. –W. Sun, J. Electrochem. Soc., 144, 2369 (1997)
    38. P. –Y. Chen, I. –W. Sun, Electrochim. Acta, 45, 3163 (2000)
    39. C. Nanjundiah, R. A. Osteryoung, J. Electrochem. Soc., 130, 1312 (1983)
    40. Y. Katayama, S. Dan, T. Miura, T. Kishi, J. Electrochem. Soc., 148, C102 (2001)
    41. E. R. Schreiter, J. E. Stevens, M. F. Ortwerth, R. G. Freeman, Inorg. Chem., 38, 3935 (1999)
    42. W. R. Pitner, C. L. Hussey, J. Electrochem. Soc., 144, 3095 (1997)
    43. R. T. Carlin, H. C. DeLong, J. Fuller, P. C. Trulove, J. Electrochem. Soc., 145, 1598 (1998)
    44. A. Raza, R. Engelken, B. Kemp, A. Siddiqui, O. Mustafa, Proc. Arkansas Acad. Sci. 49, 143 (1995)
    45. S. P. Wicelinski, R. J. Gale, Proc. Electrochem. Soc., 134, 262 (1987)
    46. M. W. Verbrugge, M. K. Carpenter, AlChE J. 36, 1097 (1990)
    47. M. K. Carpenter, M. W. Verbrugge, J. Electrochem. Soc., 87, 7, 591 (1987)
    48. 楊明桓,室溫融鹽中電鍍銻化銦薄層之探討,碩士論文,國立成功大學。
    49. S. Sirohi, T. P. Sharma, Optical Materials, 13, 267 (1999)
    50. K. Yamaguchi, N. Nakayama, H. Matsumoto, S. Ikegami, Jpn. J. Appl. Phys., 16, 1203 (1997)
    51. J. M. Woodcock, A. K. Turner, M. E. Özsan, J. G. Summers, Proceedings of the 22nd IEEE Potovoltaic Specialsts Conference, IEEE, p.842 (1993)
    52. B. M. Basol, Solar Cells, 23, 69 (1988)
    53. G. C. Morris, P. G. Tauner, A. Tottszer, Proc. 21st IEEE PVSC , 575 (1991)
    54. P. V. Meyers, Solar Cells, 27, 91 (1989)
    55. T. L. Chu, S. S. Chu, C. Ferckides, C. Q. Wu, J. Britt, C. Wang, J. Appl. Phys., 70, 12, 7608 (1991)
    56. Y. Tyan, Solar Cells, 23, 19 (1988)
    57. W. N. Skafarman, R. W. Brikmire, D. A. Farding, B. E. McCandless, A. Mondal, J. E. Philips, Solar Cells, 30, 61 (1991)
    58. A. Rohatgi, S. A. Ringel, R. Sudharsanan, H. C. Chou, Proc. 22nd IEEE, PVSC, 962 (1991)
    59. S. P. Albright, R. R. Chamberlin, J. F. Jordan, Solar Cells, 23, 137 (1991)
    60. T. Arita, A. Hanafusa, Conference record of the 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, Nevada, October 7-11,946(1991)
    61. J. M. Woodcock, A. K. Turner, M. E. Ozsan, J. G. Summers, Proc. 22nd IEEE Photovoltaic Spec. Conf., Las Vegas, Nevada, October 7-11,842(1991)
    62. J. Barker, S. P. Binns, D. R. Johnnsin, Solar Energy, 12, 79 (1992)
    63. M. P. R. Panicker, M. Kanster, F. A. Kroger, J. Electrochem. Soc., 125, 666 (1978)
    64. G. Fulop, M. Doty, P. Meyers, J. Betz, C. H. Liu, Appl. Phys. Lett., 40, 327 (1982)
    65. G. Fulop, P. Meyers, C. H. Liu, W. Hwang, E. S. Yang, Proc. 22nd IEEE Photovoltaic Spec. Conf., Las Vegas, Nevada, NV, p917 (1982)
    66. K. Uosaki, M. Takahashi, H. Kita, Electrochim. Acta, 29, 729 (1984)
    67. P. V. Mayers, Solar Cells, 23, 59 (1988)
    68. S. K. Das, G. C. Morris, J. Appl. Phys., 73, 782 (1993)
    69. N. W. Duffy, L. M. Peter, R. L. Wang, D. W. Lane, K. D. Rogers, Electrochim. Acta, 45, 3355 (2000)
    70. K. Murase, H. Uchida, T. Hirato, Y. Awakura, J. Electrochem. Soc., 146, 2, 531 (1999)
    71. K. Murase, H. Uchida, T. Hirato, Y. Awakura, J. Electrochem. Soc., 146, 5, 1798 (1999)
    72. K. Murase, H. Uchida, S. Mori, T. Hirato, Y. Awakura, J. Electrochem. Soc., 146, 12, 4477 (1999)
    73. K. Murase, Hirato, M. Yamamoto, T. Hirato, Y. Awakura, J. Electrochem. Soc., 148, 3, C203 (2001)
    74. M. Miyake, K. Murase, T. Hirato, Y. Awakura, J. Electrochem. Soc., 150, 6, C413 (2003)
    75. A. Darkowski, M. Cocivera, J. Electrochem. Soc., 132, 2769 (1985)
    76. L. Gheorghita, M. Cocivera, A. J. Nelson, A. B. Swartzlander, J. Electrochem. Soc., 141, 529 (1994)
    77. R. B. Gore, R. K. Pandey, S. K. Kullarni, Solar Energy Mater, 18, 159 (1989)
    78. A. C. Rastogi, K. S. Balakrishnan, Solar Energy Mat. Solar Cells, 36, 121 (1995)
    79. I. Markov, M. Ilieva, Thin Solid Films, 74, 109 (1980)
    80. N. F. Reshetnikova, K. S. Pedan, Zhurnal Prikladnoi Khimii, 55, 9, 1996 (1982)
    81. H. –S. Kim, K. –H. Lee, M. –C. Shin, Scripta Materialia, 38, 10, 1549 (1998)
    82. P. M. Vyacheslavov, G. K. Burkat, A. A. Tikhonov, F. M. dzhandubaeva, Zhurnal Prikladnoi Khimii, 63, 2, 436 (1990)
    83. F. M. dzhandubaeva, G. K. Burkat, P. M. Vyacheslavov, Zhurnal Prikladnoi Khimii, 54, 10, 2334 (1981)
    84. F. M. dzhandubaeva, G. K. Burkat, P. M. Vyacheslavov, Zhurnal Prikladnoi Khimii, 54, 10, 2331 (1981)
    85. S. P. Schaffer, Hamburg, C. E.Ingersoll, Tonawanda, US Pat.,4 804 517 (1989)
    86. N. Grigorievich IlJuschenko et al. UK Pat., 8306434 (1984)
    87. A. A. Tikhonov, P. M. Vyacheslavov, G. K. Burkat, Zhurnal Prikladnoi Khimii, 54, 2, 364 (1981)
    88. S. N. Vinogradov, Yu. P. Perelygin, E. A. Efimov, Élektrokhimiya, 23, 7, 966 (1987)
    89. H. –S. Kim, M. –H. Dzo, K. –H. Lee, M. –C. Shin, J. Materials Science, 35, 4989 (2000)
    90. I. –W. Sun, C. L. Hussey, J. Electroanal. Chem., 274, 325 (1989)
    91. Hugh C. De Long, J. S. Wilkes, R. T. Carlin, J. Electrochem. Soc., 141,1000 (1994)
    92. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem., 21, 1263 (1982)
    93. J. R. Sanders, in “An Investigations of Transport properties and Ion Association in Room Temperature Haloaluminate Molten Salt ”, Ph.D. Dissertation, The University of Mississippi (1987)
    94. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza, J. Dupont, Polyhedron, 15, 1217 (1996)
    95. A. J. Bard and L. R. Faulkner, Electrochemical Methods; Fundamentals and Applications, John Wiley﹠New York (1985)
    96. I. Zhdanov, Encyclopedia of electrochemistry of the element, Dekker, New York, vol. 4, pp393-443 (1975)
    97. M. Traore, R. Modolo, O. vittory, Electrochim Acta, 33,991 (1988)
    98. W. -B. Gregory, M. –L. Norton, J. –L. Stickney, J.Electroanal.Chem., 293, 85 (1990)
    99. S. Dennison, S. Wesbster, J. Electroanal. Chem., 333, 287(1992)
    100. R. D. Engelken, T. P. Van Doren, J. Electrochem. Soc., 132, 12, 2904 (1985)
    101. C. Sella, P. Boncorps, J. Vedel, J. Electrochem. Soc., 133, 10, 2043 (1986)
    102. S. Dennison, S. Webster, J. Electroanal. Chem., 333, 287 (1992)
    103. Meulenkamp, M. Laurence, J. Chem. Soc., Faraday Trans., 92, 20, 4077 (1996)
    104. V. Sudha, M. -V. Sangaranarayanan, J. Phys. Chem. B, 106, 2699 (2002)
    105. D. M. Kolb, M. Przasnyski, H. Gerischer, Electroanal. Chem. And Interfacial Electrochem., 54, 25 (1974)

    下載圖示 校內:2004-07-08公開
    校外:2004-07-08公開
    QR CODE