| 研究生: |
謝宗達 Hsieh, Tsung-Da |
|---|---|
| 論文名稱: |
於快速時變通道下正交分頻多工之信號偵測 Detection of OFDM Signals in Fast Time-Varying Channels |
| 指導教授: |
張名先
Chang, Ming-Xian |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 正交分頻多工 、次載波間的干擾 、虛擬導引信號 、快速時變通道 |
| 外文關鍵詞: | orthogonal frequency-division multiplexing (OFDM), inter-sub channel interference (ICI), pseudo-pilot, data detection, fading channels, estimation |
| 相關次數: | 點閱:183 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於快速時變環境中,正交分頻多工系統需要在傳送信號中插入較密集的導引信號,用以追蹤通道響應變化。無論如何,增加導引信號的密度,相對的也會降低系統的傳輸量。因此,我們提出一個建構在「虛擬導引信號」上的演算法,此演算法能有效追蹤快速變化的通道響應,並且不需增加更多的導引信號。我們在信號區塊中,挑選出某些資料信號,並將它們視為虛擬導引信號。接收端會考量虛擬導引信號所有可能的組合,並且求出其可能的組合所對應之資料虛列與metric。其中,對應至最小metric的資料序列,則被選擇為偵測的資料序列。除此之外,我們也提出兩個改良的方法,用來減少搜尋的次數。
對於快速時變通道而言,在一個正交分頻多工信號的週期中,通道是時變的假設是不合理的。於一個正交分頻多工信號的週期中,時變的通道響應會導致次載波間的干擾(ICI)。此現象會破壞載波間的正交性,並降低系統的效能。為了減少次載波間的干擾之影響,我們提出一個簡單且有效的次載波間干擾自我消除演算法。此演算法可以很容易地結合我們的虛擬導引信號演算法,並且不會影響原始系統架構與複雜度。模擬結果也證明所提出的演算法的效能。
In fast time-variant environments, an orthogonal frequency-division multiplexing (OFDM) system needs to insert denser pilot symbols among transmitted symbols for tracking the variation of a channel. However, increasing pilot-symbol density leads to the reduction of the transmission throughput. In this work, we propose an algorithm based on pseudopilots which can effectively track fast-varying channel responses without increasing more pilot-symbols.
Within a block of symbols, we choose some data symbols and regard them as pseudopilot symbols. The receiver considers all the possible patterns of the pseudopilots and associates each of them with a data sequence and a corresponding metric. The associated data sequence whose metric is minimum is selected as the detected data sequence.
In addition, we also propose two modified schemes to reduce the number of search.
For fast time-varying channel, it is unpractical to assume the channel is time-invariant within an OFDM symbol duration. The time-variation during one OFDM symbol interval causes inter-subchannel interference (ICI), which destroys the orthogonality among subchannels and degrade the system performance. To reduce the ICI effect, based on [24] we propose a modified ICI self-cancellation algorithm, which is simple and efficient. The modified ICI self-cancellation algorithm can be readily incorporated into our pseudopilot algorithm without affecting the original system architecture and complexity. The simulation validates the efficiency of the proposed algorithms.
[1] R. R. Mosier, and R. G. Clabaugh, “Kineplex, a Bandwidth Effcient Binary Transmission System,” AIEE Trans., Vol. 76, January 1958, pp. 723-728.
[2] B. R. Salzberg, “Performance of an Effcient Parallel Data Transmission System,” IEEE Trans. Comm., Vol. COM-15, December 1967, pp. 805-813.
[3] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Systems Technical Journal, vol. 46, pp. 1775-1796, December 1966.
[4] S. B. Weinstein, and P. M. Ebert, “Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform,” IEEE Trans. Comm., vol. COM-19, pp. 628-634, Oct. 1971.
[5] W. Y. Zou, and Y. Wu, “COFDM: an overview,” IEEE Trans. Broadc., vol. 41, No. 1, pp. 1-8, March 1995.
[6] J. S. Chow, J. C. Tu, and J. M. Cioffi, “Performance Evaluation of a Multi-channel Transceiver System for ADSL and VHDSL Services,” IEEE J. Selected Area, Vol. SAC-9, No. 6, August 1991, pp. 909-919.
[7] J. S. Chow, J. C. Tu, and J. M. Cioffi, “A Discrete Multitone Transceiver System for HDSL Applications,” IEEE J. Selected Areas in Communication, Vol. SAC-9, No. 6, August 1991, pp. 909-919.
[8] R. V. Paiement, “Evaluation of single carrier and multi-carrier modulation techniques for digital ATV terrestrial broadcasting,” CRC report No. CRC-RP-004, Ottawa, December, 1994.
[9] H. Sari, G. Karma, and I. Jeanclaude, “Transmission Techniques for Digital Terrestrial TV Broadcasting,” IEEE Comm. Mag., Vol. 33, February 1995, pp. 100-109.
[10] A. V. Oppenheim, and R. W. Schaffer, Discrete-Time Signal Processing, Upper Saddle River, NJ: Prentice Hall, 1989.
[11] S. Hara, M. Mouri, M. Okada, and N. Morinaga, “Transmission Performance Analysis of Multi-Carrier Modulation in Frequency Selective Fast Rayleigh Fading Channel,” in Wireless Personal Communications, 2nd ed., New York: Kluwer Academic Publishers, 1996.
[12] T. S. Rappaport, Wireless Communications: Principles and Practice, Upper Saddle River, NJ: Prentice Hall, 1996.
[13] R. Steel, (ed.), Mobile Radio Communications, Piscataway, NJ: IEEE Press, 1994.
[14] A. Kamerman, and A. R. Prasad, “IEEE 802.11 and HIPERLAN/2 Performance and Applications,” ECWT 2000, Paris, France, October 2-6, 2000.
[15] H. Schulze and C. Luder, Theory and Applications of OFDM and CDMA: Wideband Wireless Communications, NJ : Wiley, 2005.
[16] Ramjee Prasad, OFDM for wireless communications systems, Artech House, 2004.
[17] John G. Proakis, Digital Communications, McGraw-Hill Companies, August 2000.
[18] B. Vucetic and J. Yuan, Space-Time Coding, 1st ed. New York: Wiley, 2003.
[19] M. Saad Akram, “Pilot-based Channel Estimation in OFDM Systems,” Nokia, June 2007.
[20] M. Speth, et al., “Optimum Receiver Design for OFDM-based Broad-band Transmission - Part II: A Case Study,” IEEE Transactions on Communications, Vol 49, No. 4, Page(s): 571-578, April 2001.
[21] M.-H. Hsieh and C.-H. Wei, “Channel Estimation for OFDM Systems Based on Comb-type Pilot Arrangement in Frequency Selective Fading Channels,” IEEE Trans. Consumer Electronics, Vol. 44, no. 1, pp.217-225, Feb. 1998.
[22] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems,” IEEE Trans. Broadcasting, Vol. 48, no. 3, pp. 223-229, Sept. 2002.
[23] M.-X. Chang and T.-D. Hsieh, “Detection of OFDM signals in fast-varying channels with low-density pilot symbols,” IEEE Trans. Veh. Technol., Vol. 57, Issue 2,pp. 859-872, March 2008.
[24] M.-X. Chang, “A novel algorithm of inter-subchannel interference self-cancellation for OFDM systems,” in IEEE Trans. Wireless Commun., vol. 6, pp. 2881-2893, Aug. 2007.
[25] M.-X. Chang, “A new derivation of least-squares-¯tting principle for OFDM channel estimation,” IEEE Trans. Wireless Commun., vol. 5, no. 4, pp. 726-731, Apr. 2006.
[26] M.-X. Chang and Y. T. Su, “Model-based channel estimation for OFDM signals in Rayleigh fading,” IEEE Trans. Commun., vol. 50, no. 4, pp. 540-544, Apr. 2002.
[27] H. Alt and J. van Leeuwen, “The complexity of basic complex operations,” Computing, vol. 27, no. 3, pp. 205-215, Sep. 1981.
[28] W. C. Jakes, Microwave Mobile Communications, New York: Wiley, 1974.
[29] Guidelines for the Evaluation of Radio Transmission Technologies for IMT-2000, 1997. Recommendation ITI-R M.1225.
[30] M.-X. Chang and Y. T. Su, “Performance analysis of equalized OFDM systems in Rayleigh fading,” IEEE Trans.Wireless Commun., vol. 1, no. 4, pp. 721-732, Oct. 2002.
[31] V. Mignone and A. Morello, “CD3-OFDM: A novel demodulation scheme for fixed and mobile receivers,” IEEE Trans. Commun., vol. 44, pp. 1144-1151, Sept. 1996.
[32] B. Song, L. Gui, and W. Zhang, “Comb type pilot aided channel estimation in OFDM systems with transmit diversity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 50-57, Mar. 2006.
[33] J.-W. Choi and Y.-H. Lee, “Optimum pilot pattern for channel estimation in OFDM systems,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2083-2088, Sep. 2005.
[34] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consum. Electron., vol. 44, no. 3, pp. 1122-1128, Aug. 1998.
[35] W. G. Jeon, K. H. Chang, and Y. S. Cho, “An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels,” IEEE Trans. Commun., vol. 47, pp. 27-32, Apr. 1999.
[36] Y. Zhao and S.-G. Haggman, “Intercarrier Interference Self-Cancellation Scheme for OFDM Mobile Communication Systems,” IEEE Trans. Commun., vol. 48, pp. 1185-1191, Jul. 2001.
[37] A. Seyedi and G. J. Saulnier, “General ICI self-cancellation scheme for OFDM systems,” IEEE Trans. Veh. Technol., vol. 54, pp. 198-210 Jan. 2004.
校內:2019-12-31公開