| 研究生: |
黃冠憲 Huang, Guan-Sian |
|---|---|
| 論文名稱: |
(Mg0.95Mn0.05)TiO3微波介電材料之改善與應用 Improved and Applications of (Mg0.95Mn0.05)TiO3 Microwave Dielectric Material |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 微波介電材料 、低損耗 |
| 外文關鍵詞: | microwave dielectric, low loss |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,且嘗試著調整共振頻率溫度飄移係數使其為零;第二部份將介紹其在被動元件之應用,並實作於不同基板上探討元件尺寸的改善。
第一部份首先要介紹(Mg0.95Mn0.05)TiO3陶瓷系統之微波介電特性。由實驗中可得知(Mg0.95Mn0.05)TiO3在1330°C燒結4小時可得到最佳之介電特性εr ~ 17,Q׃~ 220,000 (at 10 GHz),τf ~ –58 ppm/°C。由於此系統之τf為負值,我們添加具正值共振頻率溫度飄移係數的鈣鈦礦材料CaTiO3 (+800 ppm/°C)、Ca0.8Sm0.4/3TiO3 (+400 ppm/°C)及Ca0.8Sr0.2TiO3 (+991 ppm/°C),探討共振頻率溫度飄移係數趨近零之最佳比例。
第二部份我們設計及實作一操作在2.4 GHz的微帶線帶通濾波器,濾波器主要採用一電場耦合的SIR結構做為主體,使用零度饋入的方式在通帶兩側產生傳輸零點,並加入一開路殘段(Open-stub)來改善倍頻寄生響應。最後,我們將此電路實作在FR4、氧化鋁和0.94(Mg0.95Mn0.05)TiO3–0.06Ca0.8Sr0.2TiO3基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。
There are two main subjects in this thesis. First, we will discuss the low loss dielectric material, and try to adjust temperature coefficient of resonant frequency near zero. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.
First, the microwave dielectric properties of (Mg0.95Mn0.05)TiO3 ceramic system have been investigated. The experiment results show that (Mg0.95Mn0.05)TiO3 ceramics has the best properties at sintering temperature 1330°C for 4 hours, which could reach the best dielectric properties εr~ 17, Q×f ~ 220,000 (at 10 GHz) and τf ~ –57 ppm/°C. Concerning about the negative value of τf, we choose adding the CaTiO3 (+800 ppm/°C), Mg0.95Co0.05TiO3 (τf ~ –55 ppm/°C), and Ca0.8Sr0.2TiO3 (+991 ppm/°C) to adjust the value, then we could make temperature coefficient of resonant frequency near zero.
Second, we design and fabricate a microstrip band-pass filter which resonator at 2.4 GHz. The filter was constructed by two stepped impedance resonators using electric coupling. In order to product transmission zeros on the opposite of the passband of band-pass filter, zero-degree feed tapping feed lines were be used. Finally, an open-stub was added to suppress the spurious response. The pattern was printed on FR4, Al2O3 and 0.94(Mg0.95Mn0.05)TiO3–0.06Ca0.8Sr0.2TiO3 substrates. By measured their frequency responses, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.
[1]H. M. O’bryan, J. Thomson, and J. K. Plourde, “A New BaO–TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
[2]G. Wolfram and H. E. Göbel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
[3]J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” Jpn. J. Appl. Phys., 33 [9B] 5466–5470 (1994).
[4]Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3–TiO2 Ceramics by Annealing Treatment,” Jpn. J. Appl. Phys., 43 [6A] L749–L751 (2004).
[5]C. L. Huang, T. J. Yang, and C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a τf Compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
[6]Y. C. Chen, S. M. Tsao, C. S. Lin, S. C. Wang, and Y. H. Chien, “Microwave Dielectric Properties of 0.95MgTiO3–0.05CaTiO3 for Application in Dielectric Resonator Antenna,” J. Alloys Compd., 471 [1–2] 347–351(2009).
[7]C. L. Huang, J. Y. Chen, and G. S. Huang, “A New Low–Loss Dielectric Using CaTiO3–Modified (Mg0.95Mn0.05)TiO3 Ceramics for Microwave Applications,” J. Alloys Compd., 499 [1] 48–52 (2010).
[8]K. H. Yoon, W. S. Kim, and E. S. Kim, “Dependence of the Octahedral Bond Valence on Microwave Dielectric Properties of Ca1-xSm2x/3TiO3 Ceramics,” Mater. Sci. Eng., B99 [1–3] 112–115 (2003).
[9]P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, “Structure–Microwave Property Relations in (SrxCa(1-x))n+1TinO3n+1,” J. Eur. Ceram.Soc., 21 [10–11] 1723–1726 (2001).
[10]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯), 陶瓷材料概論, 曉園出版社, (1988).
[11]R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 391–398 (1939).
[12]S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 16 [4] 218–227 (1968).
[13]D. M. Pozar, “Microwave Engineering,” Third Edition, John Wiley & Sons, (2005).
[14]D. Kajfez, A. W. Glisson, and J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616(1984).
[15]D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News., 13 152–161 (1983).
[16]D. Kajfez and P. Guillon, Dielectric Resonators, Artech House (1989).
[17]吳朗, 電工材料, 滄海書局, (1998).
[18]余樹楨, 晶體之結構與性質, 渤海堂文化公司, (2007).
[19]J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
[20]W. J. Huppmann and G. Petzow, Sintering Processes, Plenum Press, (1979).
[21]R. M. German, Liquid Phase Sintering, Plenum Press, (1985).
[22]J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
[23]W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[24]R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
[25]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
[26]G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
[27]張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[28]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, Second Edition, Artech House, (1996).
[29]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
[30]R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
[31]G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures,” Artech House, (1980).
[32]E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[33]C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a Planar Filter Using a Feed Structure,” IEEE Trans. Microwave Theory Tech., 50 [10] 2362–2367 (2002).
[34]C. M. Tsai, S. Y. Lee, and H. M. Lee “Transmission-Line Filters With Capacitively Loaded Coupled Lines,” IEEE Trans. Microwave Theory Tech.,51 [10] 1517–1524(2003).
[35]M. Makimoto and S.Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., 28 [12] 1413–1417 (1980).
[36]Q. X. Chu and F. C. Chen, “A Compact Dual-Band Bandpass Filter Using Meandering Stepped Impedance Resonators,” IEEE Microw. Wireless. Compon. Lett., 18 [4] 320–322(2008).
[37]B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[38]W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[39]P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[40]Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).