簡易檢索 / 詳目顯示

研究生: 李紹華
Lee, Shao-Hua
論文名稱: 適應性多模態類神經模糊晶片之設計與實現
Design and Implementation of an Adaptive Multimode Neuro-Fuzzy Chip
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 74
中文關鍵詞: 超大型積體電路倒車入庫平臺類神經模糊晶片高階合成
外文關鍵詞: VLSI, neuro-fuzzy system, high-level synthesis, car-backing system
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文主旨在以超大型積體電路技術來設計與實現適應性多模態類神經模糊晶片(adaptive multimode neuro-fuzzy chip;AMNFC)晶片。晶片的設計引用高階合成 (high-level synthesis)的設計理念,將類神經模糊系統演算法的資料流程建構為data flow graph (DFG)的型式,再分別設計其內部適宜的排程(scheduling)與配置(allocation)策略,以提高控制器的整體運算效能與減少運算模組的數量。本論文所設計的適應性多模態類神經模糊晶片具有兩項顯著的特性:多模態架構及適應性學習功能。首先,控制器內部網路可透過架構參數(Si與Sj )的給定,依不同應用的需求,自我建構(self-constructed)為任意Si×Sj個IF-THEN法則的類神經模糊系統架構,以呈現網路多模態的特性。此外,晶片內部的適應性單元提供了參數學習與更新的機制,使控制器具有晶片學習(on-chip learning)的卓越能力。論文最後,我們以非線性倒車入庫平臺為受控體來驗證適應性類神經模糊控制器的正確性,經由軟體模擬與硬體驗證的結果,證實本論文所提出之適應性多模態類神經模糊晶片擁有良好的控制性能與架構彈性。由於硬體實現可彌補軟體在執行效能不足的缺點,並能將所設計的控制晶片應用於實際的硬體平台,所以本篇論文涵蓋了整個適應性類神經模糊控制器的軟硬體設計流程,理論與應用兩者俱佳。

      The main focus of this thesis is on the chip design and implementation of an adaptive multimode neuro-fuzzy chip (AMNFC) by VLSI technology. The design concept of the AMNFC is based on high-level synthesis approach. That is, the signal flow and computation of the neuro-fuzzy system are mapped into a group of data-flow graphs (DFGs). Suitable scheduling and allocation algorithms are then developed for the DFGs to optimize the computation performance and resource utilization of the AMNFC. Two salient features of the AMNFC are multi-mode structure flexibility and on-chip learning capability. The multi-mode structure flexibility was controlled by two structure parameters (Si and Sj). That is, the AMNFC can be constructed into various network structures with SiSj IF-THEN rules according to the need of different applications. Moreover, the on-chip learning capability enables the AMNFC to fine-tune the overall control performance through its internal adaptive function unit. Finally, the AMNFC was used to control a car-backing system to validate its effectiveness. The simulation results of both software and hardware show that the AMNFC are able to control the system using different neuro-fuzzy structures with excellent performance. The advantage of the AMNFC hardware implementation is to accelerate the execution speed of neuro-fuzzy systems in software and to directly apply for real-world applications.

    目錄 中文摘要 i 英文摘要 ii 目錄 iii 表目錄 v 圖目錄 vi 第 1 章 緒論 1-1 1.1 研究背景與動機 1-1 1.2 文獻探討 1-1 1.2.1 類比晶片設計 1-2 1.2.2 數位晶片設計 1-3 1.2.3 混合類比數位設計型式 1-5 1.3 研究目的 1-7 1.4 論文架構 1-7 第 2 章 類神經模糊系統理論 2-1 2.1 前言 2-1 2.2 模糊邏輯控制 2-1 2.2.1 模糊化介面 2-3 2.2.2 模糊知識庫 2-3 2.2.3 推論引撆 2-3 2.2.4 解模糊化介面 2-3 2.3 類神經網路 2-4 2.3.1 神經元的生物模型 2-4 2.3.2 類神經網路模型 2-5 2.3.3 倒傳遞演算法 2-7 2.4 類神經模糊系統 2-9 2.5 適應性類神經模糊控制器 2-10 2.5.1 適應性類神經模糊控制器之設計 2-10 2.5.2 參數更新學習演算法 2-12 2.6 倒車最佳路徑規劃 2-13 第 3 章 控制器超大型積體電路設計 3-1 3.1 高階合成設計策略 3-1 3.1.1 資料流程圖 3.4 3.1.2 排程 3-5 3.1.3 配置 3-8 3.2 適應性多模態類神經模糊晶片架構與規格 3-10 3.2.1 前饋單元 3-11 3.2.2 適應性單元 3-18 3.2.3 暫存器陣列單元 3-23 3.2.4 記憶單元 3-23 3.2.5 控制單元 3-23 3.2.6 特殊用途運算模組介紹 3-25 第 4 章 軟體模擬與硬體驗證 4-1 4.1 倒車入庫系統介紹 4-1 4.2 軟體模擬 4-2 4.2.1 FLC應用於倒車平台 4-2 4.2.2 NFC (Neuro-Fuzzy Controller)與ANFC (Adaptive NFC) 4-3 4.2.3 軟體模擬結果 4-4 4.2.4 精簡架構ANFC 4-13 4.3 硬體驗證 4-16 4.3.1 硬體與平台簡介 4-16 4.3.2 硬體模擬結果 4-20 4.3.3 控制器運算效能與硬體資源分析 4-25 第 5 章 結論與未來工作 5-1 5.1 結論 5-1 5.2 未來工作 5-1 參考文獻

    參考文獻
    [1] J. S. Wang and C. S. G. Lee, “Efficient neuro-fuzzy control systems for autonomous underwater vehicle control,” Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul. Korea, pp. 2986-2991, May 2001.
    [2] M. Y. Chen and D. A. Linkens, “A systematic neuro-fuzzy modeling framework with application to material property prediction,” IEEE Trans. on System, vol. 31, no. 5, pp. 781-790, Oct. 2001.
    [3] S. Zahan and C. Michael, “A fuzzy hierarchical approach to medical diagnosis,” Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 319-324, July 1997.
    [4] Z. Ali and C. S. Lee, “Design of multimedia web server using a neuro-fuzzy framework,” The Ninth IEEE International Conference on Fuzzy systems, vol. 1, pp. 510-515, May 2000.
    [5] H. Ghezelayagh and K. Y. Lee, “Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier,” Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1308-1313, May 2002.
    [6] S. K. Sinha and F. Karray, “Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm,” IEEE Trans. on Neural Networks, vol. 13, no. 2, pp. 393-401, March 2002.
    [7] A. Joshi and E. N. Houstis, “On neurobiological, neuro-fuzzy, machine learning, and statistical pattern recognition techniques,” IEEE Trans. on Neural Networks, vol. 8, no. 1, pp. 18-31, Jan. 1997.
    [8] P. Melin, O. Castillo and F. Sotelo, “Automated quality control in sound speaker manufacturing using a hybrid neuro-fuzzy approach,” IFSA World Congress and 20th NAFIPS International Conference, vol. 2, pp. 1027-1032, July 2001.
    [9] R. Gregorian and G. C. Themes, Analog mos integrated circuits, New York: Wiley, 1986.
    [10] I. P. Morns and S. S. Dlay, “Analog design of a new neural network for optical character recognition,” IEEE Trans. on Neural Networks, vol. 10, no. 4, pp. 951-953, July 1999.
    [11] M. J. Wilcox and D. C. Thelen, “A retina with parallel input and pulsed output, extracting high-resolution information,” IEEE Trans. on Neural Networks, vol. 10, no. 3, pp. 574-583, May 1999.
    [12] M. C. M. Teixeira and S. H. Zak, “Analog neural nonderivative optimizers,” IEEE Trans. on Neural Networks, vol. 9, no. 4, pp. 629-638, July 1998.
    [13] A. J. Montalvo, R. S. Gyurcsik and J. J. Paulos, “Toward a general-purpose analog VLSI neural network with on-chip learning,” IEEE Trans. on Neural Networks, vol. 8, pp. 413-423, March 1997.
    [14] B. E. Shi, L. Gao and K. K. Lit, “A resistor/transconductor network for linear fitting,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 4, pp. 322-331, April 2000.
    [15] C. Mead, Analog VLSI and neural systems. Reading, MA: Addison-Wesley, 1989.
    [16] T. C. Ahn, Y. W. Kwon, H. S. Hwang and W. Pedrycz, “Design of neuro-fuzzy controller on dsp for real-time control of induction motors,” IFSA World Congress and 20th NAFIPS International Conference, vol. 5, pp. 3038-3043, July 2001.
    [17] H. Eichfeld, T. Kunemund and M. Menke, “A 12b general-purpose fuzzy logic controller chip,” IEEE Trans. on Fuzzy Systems, vol. 4, no. 4, pp. 460-475, Nov. 1996.
    [18] Dai. Kim and I. H. Cho, “An accurate and cost-effective fuzzy logic controller with a fast searching of moment equilibrium point,” IEEE Trans. on Industrial Electronics, vol. 46, no. 2, pp. 452-465, April 1999.
    [19] C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller,” IEEE Trans. on Systems, Man and Cybernetics, vol. 22, no. 2, pp. 403-435, April 1990.
    [20] H. Hikawa, “Frequency-based multilayer neural network with on-chip learning and enhanced neuron characteristics,” IEEE Trans. on Neural Networks, vol. 10, no. 3, pp. 545-553, May 1999.
    [21] D. Kim, “An implementation of fuzzy logic controller on the reconfigurable FPGA,” IEEE Trans. on Industrial Electronics, vol. 47, pp. 703-715, June 2000.
    [22] M. Chiaberge, E. Miranda and L. Reyneri, “A hybrid digital neuro-fuzzy board for control of complex systems,” IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1904-1909, Oct. 1998.
    [23] M. Chiaberge, E. Miranda and L. M. Reyneri, “An HW/SW co-design approach for neuro-fuzzy hardware design,” Proceedings of the Seventh International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems, pp. 332-337, April 1999.
    [24] B. Bona, S. Carabelli, M. Chiaberge, E. Miranda and L. M. Reyneri, “Hybrid neuro-fuzzy system for control of complex plants,” Proceedings. of ISIE '98. IEEE International Symposium on Industrial Electronics, vol. 1, pp. 87-92, July 1998.
    [25] M. Chiaberge and L. M. Reyneri, “Cintia: a neuro-fuzzy real-time controller for low-power embedded systems,” IEEE Trans. on Micro, vol. 15, no. 3, pp. 40-47, June 1995.
    [26] M. Chiaberge, E. M. Sologuren and L. M. Reyneri, “A pulse stream system for low power neuro-fuzzy computation,” IEEE Trans. on Circuits and Systems, vol. 42, no. 11, pp. 946-954, Nov. 1995.
    [27] 林信成、彭啟峰,OH! Fuzzy模糊理論剖析,第二版,第三波,台北,民83。
    [28] 林昇甫、洪成安,神經網路入門與圖樣辨識,第二版,全華,台北,民85。
    [29] 蘇木春、張孝德,類神經網路、模糊系統以及基因演算法則,第二版,全華,台北,民88。
    [30] D. E. Rumelhart, J. L. McClelland and the PDP Research Group, Parallel distributed processing: explorations in the microstructure of cognition, MIT Press, Cambridge, MA, 1986.
    [31] C. T. Lin and C. S. G. Lee, Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems, Prentice-Hall, 1996.
    [32] G. D. Micheli, Synthesis and optimization of digital circuits, McGraw-Hill, 1994.
    [33] R. A. Walker and S. Chaudhuri, “Introduction to the scheduling problem,” IEEE Trans. on Design & Test of Computers, vol. 12, no. 2, pp. 60-69, Summer 1995.
    [34] S. C. Y. Huang and W. H. Wolf, “Unifiable scheduling and allocation for minimizing system cycle time,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 5, no. 2, pp. 197-210, June 1997.
    [35] E. Nemer, R. Goubran and S. Mahmoud, “A non-deterministic scheduling and allocation model for mapping algorithms on configurable architectures,” IEEE 1997 Conference of Electrical and Computer Engineering, vol. 1, pp. 19-22, May 1997.
    [36] G. Papa and J. Silc, “Concurrent operation scheduling and unit allocation with an evolutionary technique,” Proceedings of the Euromicro Symposium on Digital System Design, pp. 430-433, Sept. 2003.
    [37] 周鵬程,遺傳演算法原理與應用─活用Matlab,修訂版,全華,台北,民91。
    [38] L. Y. Chiou, S. Bhunia and K. Roy, “Synthesis of application-specific highly-efficient multi-mode systems for low-power applications,” Europe Conference and Exhibition on Design, Automation and Test, pp. 96-101, 2003.
    [39] K. Basterretxea, J. M. Tarela and I. del Campo, “Digital design of sigmoid approximator for artificial neural networks,” IEE Journal of Electronics Letters, vol. 38, no. 1, pp. 35-37, Jan. 2002.

    下載圖示 校內:2005-08-13公開
    校外:2005-08-13公開
    QR CODE