| 研究生: |
林國寶 Lin, Guo-Bao |
|---|---|
| 論文名稱: |
鎳鋅鐵氧體粉體電磁特性和粒徑分佈對石墨烯/Epoxy複合吸波材料之影響 Study on the electromagnetic properties of Ni-Zn ferrite powders and the effect of their powder-size distributions on microwave absorbing composites based on graphene/Epoxy |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 鎳鋅鐵氧體 、粒徑 、電磁波吸收材料 |
| 外文關鍵詞: | Ni-Zn ferrite, powder size, microwave absorbing material |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討磁性/介電複合型吸收材料,將鎳鋅鐵氧粉體與石墨烯粉體摻於高分子基材Epoxy中,製作成複合電磁波吸收試片。探討其摻雜量、鎳鋅鐵氧體粉體粒徑、厚度對於反射損失之關係,並針對特定頻段設計出相對應之吸波材料之目的。
本研究在不同的鎳鋅鐵氧體粒徑分布和摻雜量下,可以發現Epoxy/鎳鋅鐵氧體試片介電損耗發生在高頻16GHz的位置,磁性損耗發生在低頻6GHz以下的位置,介電損耗和磁性損耗隨著摻雜量的增加而增加,試片的介電常數實部和導磁係數實部的數值和粒徑大小分部多寡的不同。細粒徑所造成的磁性損耗較低,但具有提高製作良率好處,反之顆粒越大則容易使試片在製作過程中失敗,但具有較高的損耗。反射損失估算結果得到,粒徑較大之粉體於低頻段有較好的吸收效果,當粉體為大粒徑且在高摻雜量的情況下,試片有機會能達到預期設定的中心頻率5GHz,反射損失-10dB且適當厚度的目標。
在不同石墨烯粉體摻雜重量下, Epoxy/鎳鋅鐵氧體/石墨烯複合試片介電及磁性損耗在低頻6GHz以下有微量的提升,但是效果不顯著。在反射損失估算結果可以得到,石墨烯在最高摻雜重量的情況下,有機會能達到預期設定的目標。若在低頻處要有更好的吸收效果仍以添加磁性材料為主。
This research presents the effects of the size distributions of Ni-Zn ferrite powders as well as addition of graphene on the absorbing properties of electromagnetic wave of epoxy/Ni-Zn ferrite/Graphene composite material. Ni0.5Zn0.5Fe2O4 powder was prepared by using conventional solid-state method, calcined at 1100℃for 2 hours. Three distinct size-distributions of Ni-Zn ferrite powers were isolated through contrived sieving-method and extra ball milling. The experimental measurements and theoretical analysis showed that there are two wave-absorbing mechanisms for the epoxy/Ni-Zn ferrite composite material, magnetic loss for low-frequency absorption of 2-6 GHz and dielectric loss for high-frequency absorption of 16-18 GHz. The absorbing efficiency of the composite materials increases with the size and volume fraction of Ni-Zn ferrite powers in the absorbing materials. For the object of reflection loss less than -10 dB centered at 5 GHz, 18.5 vol% of Ni0.5Zn0.5Fe2O4 with distribution of large power mixed with epoxy is recommended, for which the thickness of the composite material is expected less than 7 mm. For the study of effect of graphene on the absorbing properties, the present experiment demonstrated that reflection loss of -10 dB, centered at 5 GHz, and smaller thickness of composite material was possible for the addition of 3.25 vol% of graphene.
[1] F. M. Idris, M. Hashim, Z. Abbas, I. Ismail, R. Nazlan, and I. R. Ibrahim, "Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies," Journal of Magnetism and Magnetic Materials, vol. 405, pp. 197-208, 2016.
[2] S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, and M. Zhao, "Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material," Journal of Magnetism and Magnetic Materials, vol. 212, no. 1-2, pp. 175-177, 2000.
[3] R. Dosoudil, M. Usakova, J. Franek, J. Slama, and A. Gruskova, "Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites," IEEE Transactions on Magnetics, vol. 46, no. 2, pp. 436-439, 2010.
[4] 黃遠 and 馬鐵軍, "吸收劑含量對結構吸波材料吸波性能的影響," 功能材料, vol. 30, no. 4, pp. 369-371, 1999.
[5] X.-B. Zhou et al., "Preparation of nanocrystalline-coated carbon nanotube/Ni0. 5Zn0. 5Fe2O4 composite with excellent electromagnetic property as microwave absorber," Journal of Physics D: Applied Physics, vol. 46, no. 14, p. 145002, 2013.
[6] B. Mordina, R. Kumar, R. K. Tiwari, D. K. Setua, and A. Sharma, "Fe3O4 nanoparticles embedded hollow mesoporous carbon nanofibers and polydimethylsiloxane-based nanocomposites as efficient microwave absorber," The Journal of Physical Chemistry C, vol. 121, no. 14, pp. 7810-7820, 2017.
[7] B. Qu, C. Zhu, C. Li, X. Zhang, and Y. Chen, "Coupling hollow Fe3O4–Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material," ACS applied materials & interfaces, vol. 8, no. 6, pp. 3730-3735, 2016.
[8] 張瑞芳, "鈷鎳鐵氧體/奈米碳管/SiC複合材料的吸收電磁波研究," 碩士, 應用化學碩士班, 國防大學中正理工學院, 桃園縣, 2011.
[9] 洪隆傑, "鎳鋅鐵氧體與鈦酸鍶鋇複層薄膜結構之電性與磁性研究," 碩士, 材料科學工程學系, 國立清華大學, 新竹市, 2007.
[10] 陳復漢, "奈米鈷薄膜經氬/氧離子束轟擊後之微結構與磁性質研究," 碩士, 材料科學與工程學系所, 國立中興大學, 台中市, 2014.
[11] P. R. Wallace, "The Band Theory of Graphite," Physical Review, vol. 71, no. 9, pp. 622-634, 05/01/ 1947.
[12] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, no. 3, pp. 183-191, 2007/03/01 2007.
[13] W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, and M.-S. Cao, "Temperature dependent microwave absorption of ultrathin graphene composites," Journal of Materials Chemistry C, vol. 3, no. 38, pp. 10017-10022, 2015.
[14] "IEEE Standard Letter Designations for Radar-Frequency Bands," IEEE Std 521-2002 (Revision of IEEE Std 521-1984), pp. 1-10, 2003.
[15] 林明星, "電磁相容理論與實務," 2007.
[16] C. R. Paul, Introduction to electromagnetic compatibility. John Wiley & Sons, 2006.
[17] B. Wang, J. Wei, Y. Yang, T. Wang, and F. Li, "Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite," Journal of Magnetism and Magnetic Materials, vol. 323, no. 8, pp. 1101-1103, 2011.
[18] 李宗哲, "金屬複合奈米粒子於電磁波吸收之研究," 博士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2007.
[19] C.-H. Peng, H.-W. Wang, S.-W. Kan, M.-Z. Shen, Y.-M. Wei, and S.-Y. Chen, "Microwave absorbing materials using Ag–NiZn ferrite core–shell nanopowders as fillers," Journal of magnetism and magnetic materials, vol. 284, pp. 113-119, 2004.
[20] F. Marra et al., "Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets," Polymers, vol. 8, no. 8, p. 272, 2016.
[21] F. Esa, Z. Abbas, F. Mohd Idris, and M. Hashim, "Characterization of NixZn1− xFe2O4 and Permittivity of Solid Material of NiO, ZnO, Fe2O3, and NixZn1− xFe2O4 at Microwave Frequency Using Open Ended Coaxial Probe," International Journal of Microwave Science and Technology, vol. 2015, 2015.
[22] K. Tripathi, S. Abbas, P. Alegaonkar, and R. Sharma, "Microwave Absorption Properties of Ni-Zn Ferrite Nano-Particle based Nano Composite," International Journal of Advanced Research in Science, Engineering and Technology, vol. 2, no. 2, pp. 463-468, 2015.
[23] P. Liu, Z. Yao, and J. Zhou, "Fabrication and microwave absorption of reduced graphene oxide/Ni0. 4Zn0. 4Co0. 2Fe2O4 nanocomposites," Ceramics International, vol. 42, no. 7, pp. 9241-9249, 2016.
[24] Y. Wu, P. Zhu, and R. Sun, "Magnetic properties of Ni 0.4 Zn 0.6 Fe 2 O 4 synthesized by the polyol method and its epoxy composites," in 2011 International Symposium on Advanced Packaging Materials (APM), 2011, pp. 20-25: IEEE.
[25] W. Zhu, L. Wang, R. Zhao, J. Ren, G. Lu, and Y. Wang, "Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals," Nanoscale, vol. 3, no. 7, pp. 2862-2864, 2011.
[26] J. Luo, P. Shen, W. Yao, C. Jiang, and J. Xu, "Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites," Nanoscale research letters, vol. 11, no. 1, p. 141, 2016.
[27] X.-J. Zhang et al., "Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride," ACS applied materials & interfaces, vol. 6, no. 10, pp. 7471-7478, 2014.
校內:2025-08-27公開