研究生: |
林正偉 Lin, Cheng-Wei |
---|---|
論文名稱: |
氧化銦錫氨氣感測器之研製 Fabrication of Indium-Tin-Oxide(ITO) Ammonia Gas Sensors |
指導教授: |
劉文超
Liu, Wen-Chau |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 160 |
中文關鍵詞: | 氧化銦錫 、氨氣感測器 、射頻濺鍍 、顆粒大小 、結晶性 、氧空缺 |
外文關鍵詞: | ITO, ammonia sensor, RF sputtering, grain size, crystalline, oxygen deficiency |
相關次數: | 點閱:100 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,學者已經開發和研究出各種不同類型的氣體感測器。自從金屬氧化物半導體與電阻式氣體感測器發表後,由於成熟的半導體製程技術,使得體積小、靈敏度高、及可大量生產的半導體式氣體感測器逐漸成為發展之主流。
本論文中所提出的感測元件是以透明導電薄膜之氧化銦錫為基材,透明導電薄膜材料多趨向於金屬氧化物半導體,又以氧化銦錫最為廣泛運用,其具有較寬的能隙(energy gap)約為3.5~4.06 eV,在可見光區範圍內有80~92 %的高透光率且紅外光區也是透明的,在導電性以及透光性中,氧化銦錫薄膜都優於其它的透明導電薄膜。
本實驗所探討之氧化銦錫之氨氣感測器是先以指叉型狀的電極再利用射頻濺鍍一層氧化銦錫薄膜,並製作成電阻式氣體感測器,接著分別使用不同的方式改變氧化銦錫薄膜的型態,進而研究其感測能力與響應特性。
首先,我們利用黃光微影及熱蒸鍍技術沉積指叉狀電極於藍寶石基板,接著於常溫下沉積氧化銦錫薄膜,最後定義出感測的區域完成最初始的氧化銦錫薄膜之氨氣感測器。
其次,針對不同的處理方法改善其感測能力,包含(1)探討氧化銦錫在不同基板溫度下沉積的特性。在不同的基板溫度下所沉積的氧化銦錫之表面型態也會有不同的特性,如:顆粒大小、直徑和結晶性之差異。(2)探討氧化銦錫表面之粗糙度,我們將氧化銦錫薄膜沉積於金奈米點之上。相較於初始的氧化銦錫薄膜氨氣感測器,沉積於金奈米點上的氧化銦錫薄膜之粗糙度遠大於未沉積金奈米點的氧化銦錫薄膜。(3)探討經過溫度及濕度處理後的氧化銦錫表面形態。經過處理後的氧化銦錫表面會形成類似奈米棒的型狀,進而增加表面積和體積比達到較高的感測靈敏度。(4)探討氧化銦錫沉積在石英玻璃基板且在不同基板溫度下沉積的特性,進一步與氧化銦錫沉積在藍寶石基板之氧化銦錫做比較。(5)探討表面具有孔洞結構的氧化銦錫薄膜氨氣感測器。由於氧化銦錫表面具有孔洞結構,增加了吸附氣體的表面積與體積比,進而提升感測靈敏度。
最後,由實驗結果可知,藉由氧化銦錫材料本身對氣體的感測特性,加上我們使用不同的處理方式,可以製備一高靈敏度之氨氣感測器,未來也希望將此感測元件與微機電系統整合以製作成多功能之智慧型感測器。
Over the past decades, different types of gas sensors were developed. With the progress of the semiconductor fabrication technologies, semiconductor-based gas sensors with small size and high sensitivity have become the mainstream in the gas sensor community.
The studied resistance-type gas sensors were based on the indium tin oxide (ITO) material. The indium tin oxide (ITO) thin films have been widely used. The ITO is an n-type semiconductor with a wider bandgap (3.5-4.06 eV). It also has smooth surface morphology, superior electrical conductivity, and optical transparency as compared to other TCO films. The studied devices provide a promising for high-performance NH3 sensor applications.
Indium tin oxide (ITO) thin films-based ammonia sensors were fabricated by RF sputtering with (i) heated treatments, (ii) Au nanodots, (iii) temperature-humidity treatments, and (iv) heated treatments on quartz substrates, are studied and demonstrated.
First, the studied ITO thin film-based ammonia sensors were made by conventional photolithography and thermal evaporation which was employed to produce the interdigitaized electrodes on the sapphire substrate. Then, the ITO thin film was deposited on interdigitaized electrodes.
Second, we used the different treated approaches to modify the ITO thin film, (1) heated the substrate temperature. Experimentally, the crystallinty and oxygen dificiency were increased by elevating the substrate temperature. (2) Au nanodots.
The added Au nanodots.induce a rougher ITO surface. (3) temperature-humidity treatment. After the treatment, the rod-like were formed. Subsequently, a larger surface to volume ratio could be improved the sensor response.(4) heated the substrate temperature on quartz substrate.
Finally, ammonia sensing characteristics of the ITO thin film-based gas sensors were studied and demonstrated. Based on the sensing mechanism of metal-oxide, the oxidizing gas could lead to the decrease of ITO conductance. Therefore, in this study, the ITO thin film-based gas sensors were fabricated toward relatively low resistivity in order to increase the variation range of the sensing signal. Consequently, the ITO thin film-based gas sensors show the potential for the integration of micro-electro-mechanical system (MEMS) application to develop and realize multifunctional smart sensors.
1. C. H. Xu, S. Q. Shi, and C. Surya, “Gas Sensors Based on One-Dimensional Nanostructures,” Sensors, vol. 9, no. 12, pp. 9903-9924, Dec. 2009.
2. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-Zadeh, “Characterization of ZnO Nanobelt-Based Gas Sensor for H2 , NO2 , and Hydrocarbon Sensing,” IEEE Sens. J., vol. 7, no. 5-6, pp. 919-924, May-Jun.2007.
3. S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, “Comprehensive investigation on planar type of Pd–GaN hydrogen sensors,” Int. J. Hydrog. Energy, vol. 34, no. 34, pp. 5604-5615, Jul. 2009.
4. J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd / GaN Schottky diode in air and N2 atmospheres,” Sens. Actuator B-Chem., vol. 123, no. 2, pp. 1040-1048, May. 2007.
5. Z. Jiao, M. Wu, Z. Qin, M. Lu, and J. Gu, “The NO2 sensing ITO thin films prepared by ultrasonic spray pyrolysis,” Sensors, vol. 3, no. 8, pp. 285-289, Aug. 2003.
6. C. S. Rout, M. Hegde, A. Govindaraj, and C. N. R. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18, no. 20, pp. 205504, May. 2007.
7. Y. Y. Tsai, K. W. Lin, H. I. Chen, I. P. Liu, C. W. Hung, T. P. Chen, T. H. Tsai, L. Y. Chen, K. Y. Chu, and W. C. Liu, “Transient response of a transistor-based hydrogen sensor,” Sensors. Actuat. B-Chem., vol.134, no. 2, pp. 750-754, Sep. 2008.
8. A. Foucaran, F. Pascal-Delannoy, A. Giani, A. Sackda, P. Combette, and A. Boyer, “Porous silicon layers used for gas sensor applications,” Thin Solid Films, vol.297, no. 1-2, pp. 317-320, Apr. 1997.
9. P. Ripka, J. Kubik, M. Duffy, W. Hurley, and S. O'Reilly, “Current sensor in PCB technology,” IEEE Sens. J., vol.5, no. 3, pp. 433-438, Jun. 2005.
10. H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, no. 1-2, pp. 10-18, Jun. 2002.
11. A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE
Electron Device Lett., vol. 18, no. 6, pp. 287-289, Jun. 1997.
12. P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, no. 3, pp. 223-237, Mar. 1997.
13. N. Ali, M. Hashim, and A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electronics, vol. 52, no. 7, pp. 1071-1074, Jul. 2008.
14. T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuator A-Phys., vol. 136, no. 1, pp. 244-248, May 2007.
15. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt-oxide-Al0.24 Ga0.76 As high-electron-mobility transistor,” Appl. Phys. Lett., vol. 86, no. 2, pp. 112103, Mar. 2005.
16. X. H. Wang, X. L. Wang, C. Feng, C. B. Yang, B. Z. Wang, J. X. Ran, H. L. Xiao, C. M. Wang, and J. X. Wang, “Hydrogen sensors based on AlGaN/AlN/GaN HEMT,” Microelectron. J., vol. 39, no. 1, pp. 20-23, Jan. 2008.
17. N. Yamazoe, and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Trans. Compon. Packaging Technol., vol. 18, no. 2, pp. 252-256, Jun. 1995.
18. K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, and N. Murayama, “Micromechanical fabrication of low-power thermoelectric hydrogen sensor,” Sens. Actuator B-Chem., vol. 108, no. 1-2, pp. 973-978, Jul. 2005.
19. P. Gruendler, “Chemical Sensors,” Springer, Berlin, Chapter 1, pp. 9, 2007.
20. D. G. Castner, and B. D. Ratner, “Biomedical surface science: Foundations to frontiers,” Surf. Sci., vol. 500, no. 1-3, pp. 28-60, Mar. 2002.
21. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, no. 2-3, pp. 425-430, May. 2004.
22. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, Chun-Yuan Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes,” Semicond. Sci. Technol., vol. 19, pp. no. 6, pp. 778-782, Jun. 2004.
23. W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, no. 12, pp. 8175-8181, Jun. 1994.
24. L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals (Pt, Pd, and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, no. 1-3, pp. 614-618, Mar. 1992.
25. Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/lGaAs-based Schottky diodes”, IEEE Trans. Electron Devices, vol. 50, no. 12, pp.2532-2539, Dec. 2003.
26. K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B. vol. 94, no. 2, pp. 145-151, Sep. 2003.
27. K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” `Semicond. Sci. Technol., vol. 18, no. 7, pp. 615-619, Jul. 2003.
28. D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs -platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci. Technol. B, vol. 1, no. 3, pp. 602-607, Jul. 1983.
29. W. C. Liu, H. J. Pan, H. I Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, no. 9, pp. 1938-1944, Sep. 2001.
30. H. I. Chen and Y. I. Chou, “ A comparative study on hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, no. 2, pp. 104-110, Feb. 2003.
31. S. Okuyama, K. Umemoto, K. Okauyama, S. Ohshima, and K. Matsushita, ” Pd/Ni-Al2O3-Al tunnel diode as high-concentration-hydrogen gas sensor,” J. Appl. Phys., vol. 36, no. 3A, pp. 1228-1232, Mar. 1997.
32. S. Okuyama, H. Usami, K. Okauyama, H. Yamada, and K. Matsushita, ” Improved response time of Pd/Ni-Al2O3-Al tunnel diode hydrogen gas sensor,” J. Appl. Phys., vol. 36, no. 11, pp. 6905-6908, Nov. 1997.
33. K. Mutamba, M. Flath, A. Sigurdardottir, A. Vogt, and H. L. Hartnagel, ” A GaAs pressure sensor with frequency output based on resonant tunneling diodes,” IEEE Trans. vol. 48, no. 6, pp. 1333-1337, Dec. 1999.
34. C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd/oxide/Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, no. 6, pp. 390-392, Jun. 2003.
35. L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device, ” IEEE Electron Device Lett., vol. 2, no. 4, pp. 82-84, 1981.
36. O. Casals, B. Barcones, C. Serre, J. R. Morante, P. Godignon, J. Montserrat, and J. Millan, “Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor,” Sens. Actuators B, vol. 109, no. 1, pp. 119-127, Aug. 2005.
37. S. Pitcher, J. A. Thiele, H. Ren, and J. F. Vetelino, ”Current/voltage characteristics of a semiconductor metal oxide gas sensor,” Sens. Actuators B, vol. 93, no. 1-3, pp. 454-462, Aug. 2003.
38. P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases,” Sens. Actuators B, vol. 43, no. 1-3, pp. 52-59, Sep. 1997.
39. I. Lundström, “Hydrogen sensitive MOS-structures. 1. principles and applications,” Sens. Actuators, vol. 1, no. 4, pp. 403-426, 1981.
40. S. Batra, K. Park, S. Banerjee, D. Kwong,A.Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, no. 5, pp. 194-196, May. 1990.
41. R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen exposure,” IEEE Trans. Nucl. Sci., vol. 41, no. 6, pp. 1844-1853, Dec. 1994.
42. T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, no. 9, pp. 1618-1622, Sep. 1994.
43. I. C. Kizilyalli, J. W. Lyding, and K. Hess, “ Deuterium post-metal annealing of MOSFET’s for improved hot carrier reliability,” IEEE Electron Device Lett., vol. 18, no. 3, pp. 81-83, Mar 1997.
44. H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “High sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron Lett., vol. 33, no. 6, pp. 535-536, Mar 1997.
45. K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol, vol. 16, no. 12, pp. 997-1001, Jan. 2001.
46. N. Singh, C. Yan, and P. S. Lee, “Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors,” Sens. Actuator B-Chem., vol. 150, no. 1, pp. 19-24, Sep. 2010.
47. T. Usagawa, and Y. Kikuchi, “Air-Annealing Effects for Pt/Ti Gate Si-Metal–Oxide–Semiconductor Field-Effect Transistors Hydrogen Gas Sensor,” Appl. Phys. Express, vol. 3, no. 4, pp. 047201, 2010.
48. B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications-a review,” Sens. Actuator B-Chem., vol. 107, no. 2, pp. 666-677, Jun. 2005.
49. L. Zhang, F. M.eng, Y. Chen, J. Liu, Y. Sun, T. Luo, M. Li, and J. Liu, “A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays,” Sens. Actuator B-Chem., vol. 142, no.1, pp. 204-209, Oct. 2009.
50. J. W. Erisman, R. Otjes, A. Hensen, P. Jongeian, P. van den Bulk, A. Khlystov, H. Mols, and S. Slanina,“ Instrument development and application in studies and monitoring of ambient ammonia,” Atmos. Environ., vol. 35, no. 11, pp. 1913-1922, 2001.
51. S. V. Krupa, “Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review,” Environ. Pollut., vol. 124, no. 2, pp. 179-221, 2003.
52. R. Moos, R. Muller, C. Plog, A. Knezevic, H. Leye, E. Irion, T. Braun, K. J. Marquardt, and K. Binder, “Selective ammonia exhaust gas sensor for automotive applications, ”Sens. Actuator B-Chem., vol. 83, no. 1-3, pp. 181-189, Mar. 2002.
53. S. M. Lee, Y. S. Lee, C. H. Shim, N. J. Choi, B. S. Joo, K. D. Song, J. S. Huh, and D. D. Lee, “Three electrodes gas sensor based on ITO thin film,” Sens. Actuator B-Chem., vol. 93, no. 1-3, pp. 31-35, Aug. 2003.
54. R. M. Carlson, “Automated Separation and Conductimetric Determination of Ammonia and Dissolved Carbon Dioxide,” Anal. Chem., vol. 50, no. 11, pp. 1528-1531, 1978.
55. M. Kambe, M. Fukawa, N. Taneda, K. Sato,“Improvement of a-Si solar cell properties by using SnO2 :F TCO films coated with an ultra-thin TiO2 layer prepared by APCVD,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 18-19, pp. 3014-3020, Nov. 2006.
56. M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, “Theoretical modeling of TiO2 /TCO interfacial effect on dye-sensitized solar cell performance,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 13, pp. 2000-2009, Aug. 2006.
57. K. Osaza, T. Ye, Y. Aoyagi, “Deposition of thin indium oxide film and its application to selective epitaxy for in situ processing,” Thin Solid Films, vol. 246, no. 1-2, pp. 58-64, Jun. 1994.
58. Y. K. Su, Y. Z. Chiou, C. S. Chang, S. J. Chang , Y. C. Lin, and J. F. Chen, “4H-SiC metal–semiconductor–metal ultraviolet photodetectors with Ni/ITO electrodes,” Solid-State Electron., vol. 46, no. 12, pp. 2237-2240, Dec. 2002.
59. E. Aperathitis, M. Bender, V. Cimalla, G. Ecke, and M. Modreanu, “Properties of rf-sputtered indium-tin-oxynitride thin films,” J. Appl. Phys., vol. 94, no. 2, pp. 1258-1266, Jul. 2003.
60. Z. Jiao, M. Wu, J. Gu, X. Sun, “The gas sensing characteristics of ITO thin film prepared by sol–gel method,” Sens. Actuator B-Chem., vol. 94, no. 2, pp. 216-221, Sep. 2003.
61. H. Mbarek, M. Saadoun, and B. Bessaïs, “Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing,” Mater. Sci. Eng. C-Biomimetic Supramol. Syst., vol. 26, no. 26, pp. 500-504, Mar. 2006.
62. A. Salehi, A. Nikfarjam, “Room temperature carbon monoxide sensor using ITO / n-GaAs Schottky contact,” Sens. Actuator B-Chem., vol. 101, no. 3, pp. 394-400, Jul. 2004.
63. K. S. Yoo, S. H. Park, J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuator B-Chem., vol. 108, no. 1-2, pp. 159-164, Jul. 2005.
64. Z. Jiao, M. Wu, Z. Qin, M. Lu, J. Gu, “The NO2 sensing ITO thin films prepared by ultrasonic spray pyrolysis,” Sensors, vol. 3, no. 8, pp. 285-289, Aug. 2003.
65. G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, “A study on the microstructure and gas sensing properties of ITO nanocrystals,” Thin Solid Films., vol. 515, no. 24, pp. 8637-8640, Oct. 2007.
66. D. M. Han, J. H. Lee, K. H. Jeong, and J. G. Lee, “Effects of substrate bias power on the surface of ITO electrodes during O-2/CF4 plasma treatment and the resulting performance of organic light-emitting diodes,” Met. Mater.-Int., vol. 16, no. 4, pp. 627-632, Aug. 2010.
67. E. H. Kim, C. W. Yang, and J. W. Park,“Improving the delamination resistance of indium tin oxide (ITO) coatings on polymeric substrates by O-2 plasma surface treatment, ” Curr. Appl. Phys., vol. 10, no. 3, pp. s510-s514, May. 2010.
68. P. Cusumano, “Efficiency enhancement of organic light emitting diodes by NaOH surface treatment of the ITO anode,” Solid-State Electron., vol. 53, no. 9, pp. 1056-1058, Sep. 2009.
69. Z. H. Huang, X. T. Zeng, X. Y. Sun, E.T. Kang, J. Y. H. Fuh, and L. Lu, “Influence of electrochemical treatment of ITO surface on nucleation and growth of OLED hole transport layer,” Thin Solid Films, vol. 517, no. 17, pp. 4810-4813, Jul. 2009.
70. Z. H. Huang, X. T. Zeng, X. Y. Sun, E.T. Kang, J. Y. H. Fuh, and L. Lu, “Influence of plasma treatment of ITO surface on the growth and properties of hole transport layer and the device performance of OLEDs,” Org. Electron., vol. 9, no. 1, pp. 51-62, Feb. 2008.
71. D. J. Yun, D. K. Lee, H. K. Jeon, and S. W. Rhee, “Contact resistance between pentacene and indium-tin oxide (ITO) electrode with surface treatment, ” Org.
Electron., vol. 8, no. 6, pp. 690-694, Dec. 2007.
72. H. Shin, C. Kim, C. Bae, J. S. Lee, J. Lee, and S. Kim, “Effects of ion damage on the surface of ITO films during plasma treatment,” Appl. Surf. Sci., vol. 253, no. 22, pp. 8928-8932, Sep. 2007.
73. M. H. Jung, and H. S. Choi, “Surface treatment and characterization of ITO thin films using atmospheric pressure plasma for organic light emitting diodes,” J. Colloid Interface Sci., vol. 310, no. 2, pp. 550-558, Jun. 2007.
74. S. Archambeau, I. Seguy, P. Jolinat, J. Franc, P. Destruel, T. P. Nguyen, and H. Bock, “Stabilization of discotic liquid organic thin films by ITO surface
treatment,” Appl. Surf. Sci. , vol. 253, no. 4, pp. 2078-2086, Dec. 2006.
75. Z. H. Huang, X. T. Zeng, E. T. Kang, J. Y. H. Fuh, L. Lu, and X. Y. Sun,“Electrochemical treatment of ITO surface for performance improvement of
organic light-emitting diode,” Electrochem. Solid State Lett. , vol. 9, no. 6, pp. H39-H42, 2006.
76. S. Besbes, O. H. Ben, J. Davenas, L. Ponsonnet, N. Jaffrezic, and Alcouffe P,“Effect of surface treatment and functionalization on the ITO properties for OLEDs,” Mater. Sci. Eng. C-Biomimetic Supramol. Syst., vol. 26, no. 2-3, pp. 505-515, Mar. 2006.
77. C. Kim, B. Lee, H. J. Yang, M. H. Lee, J. G. Lee, and H. Shin, “Effects of surface treatment on work function of ITO (Indium Tin Oxide) films,” J. Korean. Math. Soc. , vol. 47, pp. S417-S421, Nov. 2005.
78. L. Wang, X. Q. Zhang, P. Lin, D. P. Xiong, and S. H. Huang, “Influence of novel surface treatment of ITO anodes on the performance of OLED,” J. Electron
Spectrosc. Relat. Phenom. , vol. 25, no. 8, pp. 1207-1209, Aug. 2005.
79. Y. H. Yun, J. W. Choi, and S. C. Choi, “Surface treatment of Indium Tin Oxide (ITO) thin films synthesized by chemical solution deposition,” J. Ceram. Process. Res., vol. 5, no. 4, pp. 395-398, 2004.
80. J. J. Kim, and S. H. Cha, “Optimized surface treatment of indium tin oxide (ITO) for copper electroless plating,” Jpn. J. Appl. Phys., vol. 41, no. 11A, pp. L1269-1271, Nov. 2002.
81. M. H. Jung, and H. S. Choi, “Surface Treatment of Indium Tin Oxide Using Radio Frequency Atmospheric and Low Pressure Plasma for OLEDs,”J. Electrochem. Soc. , vol. 516, no. 7, pp. 1370-1373, Feb. 2008.
82. E. S. Lee, J. H. Choi, and H. K. Baik, “Surface cleaning of indium tin oxide by atmospheric air plasma treatment with the steady-state airflow for organic light emitting diodes,” Surf. Coat. Technol., vol. 201, no. 9-11, pp. 4973-4978, Feb. 2007.
83. Y. J. Lin, C. F. You, and C. L. Tsai, “Effects of (NH4 ) 2 S x treatment on surface work function and roughness of indium–tin-oxide,” Appl. Surf. Sci., vol. 253, no.8, pp. 3957-3961, Feb. 2007.
84. J. A. Chaney, S. E. Koh, C. S. Dulcey, and P. E. Pehrsson, “Surface chemistry of carbon removal from indium tin oxide by base and plasma treatment, with implications on hydroxyl termination,” Appl. Surf. Sci., vol. 218, no. 1-4, pp. 258-266, Sep. 2003.
85. J. Goldstein, D. Newbury, P. Echlin, C. Lyman, D. Joy, E. Lifshin, L. Sawyer, and J. Michael, Scanning electron microscopy and X-ray microanalysis. 2003: Plenum Pub Corp.
86. J. Goldstein and H. Yakowitz, Practical scanning electron microscopy: electron and ion microprobe analysis. 1975: Plenum Press New York.
87. E. Wolf, “Solution of the Phase Problem in the Theory of Structure Determination of Crystals from X-Ray Diffraction Experiments,” Phys. Rev. Lett., vol. 103, no.7, pp. 075501, Aug. 2009.
88. G. Bauer and W. Richter, Optical characterization of epitaxial semiconductor layers. 1996: Springer Berlin.
89. W. H. Zachariasen and E. L. Hill, “The Theory of X-ray Diffraction in Crystals,”J. Phys. Chem., vol.50, pp. 289-290, Mar. 1946.
90. Y. Roiter, and S. Minko, “AFM Single Molecule Experiments at the Solid−Liquid Interface: In Situ Conformation of Adsorbed Flexible Polyelectrolyte Chains,” J.Am. Chem. Soc., vol.127, no. 45, pp. 15688-15689, Nov. 2005.
91. B. Bhushan, K. J. Kwak, and M. Palacio, “Nanotribology and nanomechanics of AFM probe-based data recording technology,” J. Phys.-Condes. Matter, vol.20, no. 36, pp. 365207, Sep. 2008.
92. H. S. Yang, Y. F. Wang, S. J. Lai, H. J. Li, and F. S. Chen, “Application of Atomic Force Microscopy as a Nanotechnology Tool in Food Science,” J. Food Sci.,vol.72, no. 4, pp. R65-R75, May. 2007.
93. F. C. Simeone, C. Albonetti, amd M.Cavallini, “Progress in Micro- and Nanopatterning via Electrochemical Lithography,” J. Phys. Chem. C, vol.113, no.44, pp. 18987-18994, Nov. 2009.
94. S. R. Cohen, and A. Bitler, “Use of AFM in bio-related systems,” Curr. Opin.Colloid Interface Sci., vol.13, no. 5, pp. 316-325, Oct. 2008.
95. Y. F. Dufrene, “Towards nanomicrobiology using atomic force microscopy,” Nat.Rev. Microbiol., vol.6, no. 9, pp. 674-680, Sep. 2008.
96. A. Engel, and D. J. Muller, “Observing single biomolecules at work with the atomic force microscope,” Nat Struct Biol, vol.7, no. 9, pp. 715-718, Sep. 2000.
97. K. L. Chopra, S. Major, D. K. Pandya, “TRANSPARENT CONDUCTORS - A STATUS REVIEW,” Thin Solid Films, vol.102, no. 1, pp. 1-46, 1983.
98. J. Philip, N. Theodoropoulou, G. Berera, J. S. Moodera, and B. Satpati,“High temperature ferromagnetism in manganese-doped indium–tin oxide films,”Appl. Phys. Lett , vol.85, no. 5, pp. 777-779, Aug. 2004.
99. S. M. Kim, K. H. Seo, J. J. Kim, H. Y. Lee, and J. S. Lee, “Preparation and sintering of nanocrystalline ITO powders with different SnO 2 content,” J. Eur. Ceram. Soc. , vol.26, no. 1-2, pp. 73-80, 2006.
100. G. B. Gonzalez, T. O. Mason, J. P. Quintana, O. Warschkow, D. E. Ellis, J. H. Hwang, J. P. Hodges, and J. D. Jorgensen, “Defect structure studies of bulk and nano-indium-tin oxide,” J. Appl. Phys. , vol.96, no. 7, pp. 3912-3920, Oct. 2004.
101. M. Quaas, C. Eggs, and H. Wulff, “Structural studies of ITO thin films with the Rietveld method,” Thin Solid Films, vol.332, no. 1-2, pp. 277-281, Nov. 1998.
102. S. Suh, and D. M. Hoffman, “General Synthesis of Homoleptic Indium Alkoxide Complexes and the Chemical Vapor Deposition of Indium Oxide Films,” J. Am. Chem. Soc., vol.122, no. 39, pp. 9396-9404, Oct. 2000.
103. I. H. Yang, Y. Lee, J. N. Jang, and M. Hong, “Study of the inductively coupled plasma assisted DC magnetron sputtering (ICPDMS) during ITO deposition,” Thin Solid Films, vol.517, no. 14, pp. 4165-4169, May. 2009.
104. G. J. Wang, and H. T. Chen, “Fabrication of 3D Nano-structured ITO Films by RF Magnetron Sputtering,” Curr. Nanosci. , vol.5, no. 3, pp. 297-301, Aug. 2009.
105. C. P. Udawatte, and K. Yanagisawa, “Fabrication of Low-Porosity Indium Tin Oxide Ceramics in Air from Hydrothermally Prepared Powder,” J. Am. Ceram. Soc. , vol.84, no. 1, pp. 251-253, Jan. 2001.
106. P. Thilakan, and J. Kumar, “Oxidation dependent crystallization behaviour of IO and ITO thin films deposited by reactive thermal deposition technique,” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol.55, no. 3, pp. 195-200, Sep.1998.
107. Z. Jiao, M. H. Wu, Z. Qin, M. H. Lu, J. Z. Gu, “The NO2 sensing ITO thin films prepared by ultrasonic spray pyrolysis,” Sensors, vol.3, no. 8, pp. 285-289, Aug. 2003.
108. F. F. Ngaffo, A. P. Caricato, M. Fernandez, M. Martino, and F. Romano,“Structural properties of single and multilayer ITO and TiO 2 films deposited by reactive pulsed laser ablation deposition technique,” Appl. Surf. Sci., vol.253, no. 15, pp. 6508-6511, May. 2007.
109. H. Cho, and Y. H. Yun, “Characterization of indium tin oxide (ITO) thin films prepared by a sol–gel spin coating process,” Ceram. Int., vol.37, no. 2, pp.615-619, Mar. 2011.
110. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-Zadeh,“Characterization of ZnO Nanobelt-Based Gas Sensor for H2 , NO2 , and
Hydrocarbon Sensing,” IEEE Sens. J., vol. 7, no. 5-6, pp. 919-924, May-Jun. 2007.
111. K. K. Makhija, A. Ray, R. M. Patel, and U. B. Trivedi, “Indium oxide thin film based ammonia gas and ethanol vapour sensor,”Bull. Mater. Sci., vol. 28, no. 1,pp. 9-17, Feb. 2005.
112. G. Faglia, P. Nelli, and G. Sberveglieri, “Frequency effect on highly sensitive NO2 sensors based on RGTO SnO2 (Al) thin films,” Sens. Actuator B-Chem.,vol. 19, no. 1-3, pp. 497-499, Apr. 1994.
113. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssiers, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing
applications,” Nanotechnology., vol. 17, no. 19, pp. 4995-4998, Oct. 2006.
114. J. Li, H. Fan, X. Jia, “Multilayered ZnO Nanosheets with 3D Porous Architectures : Synthesis and Gas Sensing Application,” J. Phys. Chem. C., vol.114, no. 35, pp. 14684-14691, Aug. 2010.
115. N. Boonyopakorn, N. Sripongpun, C.Thanachayanont, and S. Dangtip, “Effects of substrate temperature and vacuum annealing on properties of ITO films prepared by radio-frquency magnetron sputtering,” Chin. Phys. Lett., vol. 27,
no. 10, pp. 108103, Oct. 2010.
116. J. H. Lee, “Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering, ”J. Electroceram., vol. 23, no. 2-4, pp. 554-558, Oct. 2009.
117. H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,”J. Appl. Phys., vol. 88, no. 10, pp. 6021-6025, Nov. 2000.
118. Y. S. Jung, D. W. Lee, and D. Y.Jeon,“Influence of dc magnetron sputtering parameters on surface morphology of indium tin oxide thin films,”Appl. Surf. Sci., vol. 221, no. 1-4, pp. 136-142, Jan. 2004.
119. Y. Sato, M. Taketomo, N. Ito, and S. Yuzo, “Study on early stages of film growth for Sn doped In2O3 films deposited at various substrate temperatures,” Thin Solid Films., vol. 516, no. 17, pp. 5868-5871, Jul. 2008.
120. V. S. Reddy, K. Das, A. Dhar, and S. K. Ray, “The effect of substrate temperature on the properties of ITO thin films for OLED applications,” Semicond. Sci. Technol., vol. 21, no. 12, pp. 1747-1752, Dec. 2006.
121. N. L. Hung, H. Kim, S. K. Hong,and D.Kim, “Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots,” Sens. Actuator B-Chem., vol. 151, no. 1, pp. 127-132, Nov. 2010.
122. M. Z. Gao, K. Xin, and W. R. Fahrner, “Study of the morphological change of amorphous ITO films after temperature-humidity treatment,” J. Non-Cryst. Solids, vol. 355, no. 52-54, pp. 2682-2687, Dec. 2009.
123. G. N. Chaudhari, S. V. Jagtap, N. N. Gedam, M. J. Pawar, and V. S. Sangawar, “Sol–gel synthesized semiconducting LaCo0.8Fe0.2O3-based powder for thick film NH3 gas sensor,” Talanta, vol. 78, vo. 3, pp. 1136-1140, Jan. 2009.
124. N. V. Hieu, N. Q. Dung, P. D. Tam, T. Trung, N. D. Chien, “Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature,” Sens. Actuator B-Chem., vol. 140, no. 2, pp. 500-507, Jul. 2009.
125. B. Li, and Y. Wang, “Hierarchically assembled porous ZnO microstructures and applications in a gas sensor,” Superlattices Microstruct., vol. 49, no. 4, pp. 433-440, Apr. 2011.
126. M. Tiemann, “Porous Metal Oxides as Gas Sensors,” Chem.-Eur. J., vol. 13, no. 30, pp. 8376-8388, 2007.