| 研究生: |
巫勝傑 Wu, Sheng-jie |
|---|---|
| 論文名稱: |
鋅摻雜之氧化鋅其退火行為研究 A Study of Annealing Effect of Zn-doped ZnO |
| 指導教授: |
田興龍
Tyan, Shing-long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 氧化鋅 、共濺鍍 |
| 外文關鍵詞: | RTPL, ZnO |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗是將純氧化鋅和鋅以共濺鍍法在矽基板上成長2% 及5%鋅摻雜的氧化鋅薄膜,並且將濺鍍好的樣品分別在空氣、氮氣和氧氣下退火,退火溫度為500~900℃,再由室溫光激發螢光光譜(room temperature photoluminescence, RTPL)之紫外光部份分析退火溫度與退火之氣體環境對氧化鋅薄膜晶體品質及晶粒大小的影響,再以其可見光光譜分析樣品中之缺陷在不同退火溫度與退火之氣體環境中之變化。此外,我們在可見光譜線上觀察到相當多的振盪,這些振盪可能為光激電子(photo-excited electron)受到共振聲子所致(resonant phonon-assisted)而衰減(decay)至雜質帶(impurity band)後復合發光所產生的。
在空氣下退火,其最佳退火溫度為800℃,而在此溫度下變化退火時間由30分鐘增至120分鐘時,又以60分鐘為其最佳退火時間。此外,由樣品RTPL可見光譜線於氧氣下退火發現摻雜量不同其PL光譜圖有藍位移現象。在氮氣900℃退火時發現紫外光譜線呈現不對稱,當摻雜量改變時又恢復對稱。由上述發現的現象表示製程與光學性質的確有關連,此即為本實驗研究探討的重點所在。
In our study, pure, 2% and 5% zinc-doped zinc oxide (ZnO:Zn) thin films were deposited on silicon substrates by RF magnetron co-sputtering method under argon. Samples were annealed under air, nitrogen and oxygen atmospheres at annealing temperature ranging from 500 to 900℃.
The influence of ZnO structural crystallinity for annealing temperature and ambient were analyzed by room temperature photoluminescence (RTPL) measurement. The PL spectrum in the visible light region was used to analyze defects of samples in variation of different annealing temperature and ambient. In addition, we could observe a lot of vibrations in the spectrum, which is due to the resonant phonon-assisted decay of photoexcited electrons to an impurity band, followed by radioactive recombination.
The peak intensity of near band-edge (NBE) emission of RTPL is strongest for annealed pure ZnO film treated at 900℃ in air, N2 and O2 atmosphere. The best annealing temperature for zinc doped ZnO film is 800℃, and the best annealing time is 60 minutes at this annealing temperature. The NBE peak shows blue shift with increasing doping concentration for the specimens annealed in O2 atmosphere. The RTPL NBE shows asymmetric line shape for pure ZnO film annealed at 900℃ in N2 atmosphere and improved with increasing doping concentration.
1. Q. F. Zhou,a C. Sharp, J. M. Cannata, and K. K. Shung, Appl. Phys. Lett. 90, 113502 (2005).
2. Chuan-Lei Jia, Ke-Ming Wang, Xue-Lin Wang and Xi-Jian Zhang,Optics Express 13, 13, 5093-5099 (2006).
3. X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, A.J. Flewitt, S. Maeng, S.H. Kim, Y.J. Choi, D.S. Lee, N. M. Park, J. Park, W.I. Milne1, J. Phys.: Conf. Ser. 76,012035 ( 2007).
4. S. Ezhilvalavan and T. R. N. Kutty,Appl. Phys. Lett. 69, 3540 (1996).
5. Jae Young Park, Dong Eon Song and Sang Sub Kim1, Nanotechnology 19,105503 (2008).
6. Z.Z. Zhanga, Z.P. Weia, Y.M. Lua, D.Z. Shena, B. Yaoa, B.H. Lia, D.X. Zhaoa,J.Y.Zhanga,X.W. Fana, Z.K. Tangb, J. Crys.Growth 301-302, 362-365 (2007).
7. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, and H. Morkoç,J. Appl. Phys. 98,041301 (2005).
8. Brain Campman, “Plasma”,Glow Discharge Process,John Wiley&Sons,New
York, U.S.A., 85(1980).
9. M.A.Nicolet,“Diffusion Barriers in ThinFilm”,Thin Soild Films 52,415(1978).
10. D.R.Vij, “Luminescence of Solids”Plenum Press, New York and London,
95(1998)
11. 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華科技 (2003)。
12.S. Mandal, M.L.N. Goswami, K. Das, A. Dhar, S.K. RayThin Solid Films 516,8702– 8706 (2008).
13.Le Hong Quanga,Soo Jin Chuaa,Kian Ping Loha,Eugene Fitzgeralda,
J. Crys.Growth 287, 157–161 ( 2006).
14. Q. Yang, K. Tang, J. Zuo, Y. Qian, Appl. Phys. A 79, 1847 (2004).
15.X.Liu, X. Wu, H. Cao,R.P.H.Chang, J.Appl.Phys. 95, 3141 (2004).
16. P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, H. B. Pan, Nucl. Instrum.
Methods Phys. Res. B 199,286 (2003).
17. Jinghai Yang, Xiaoyan Liu, Lili Yang, Yaxin Wang, Yongjun Zhang, Jihui Lang,Ming Gao, Bo Feng,Journal of Alloys and Compounds 477,632–635 (2009).
18.By Michael H. Huang, Yiying Wu, Henning Feick,Ngan Tran, Eicke Weber, and Peidong Yang,Adv. Mater. 13, 2 (2001).
19.S. Ramanathan and S. Bandyopadhyaya, Appl. Phys. Lett.89,143121 (2006).
20. Vladimir A. Fonoberov, Khan A. Alim, and Alexander A. Balandin Phys. Rev. B 73,165317 (2006) .
21. J. P. Zhang,a L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, and X. J.Wang, J. Appl. Phys.102, 114903 (2007).
22. X. Q. Meng, D. Z. Shen, J. Y. Zhang, D. X. Zhao, Y. M. Lu, L.Dong,
Z. Z. Zhang, Y. C. Liu, X. W. Fan, Solid State Commun. 135,179 (2005).
23. Q. Yang, K. Tang, J. Zuo, Y. Qian, Appl. Phys. A 79, 1847 (2004).
24. D. Zhao, C. Andreazza, P. Andreazza, J. Ma, Y. Liu, D. Shen,Chem. Phys. Lett. 399,522 (2004).
25. B.X. Lin, Z.X. Fu, Y.B. Jia, Appl. Phys. Lett. 79,943 (2001).
26. L. L. Yang, Q. X. Zhao, M. Willander, J. H. Yang, and I.Ivanov, J. Appl. Phys. 105, 053503 (2009).
27. T. B. Hur, Y.-H. Hwang, H.-K. Kim, Appl. Phys. Lett. 86,193113 (2005).
28. S. Y. Bae, C. W. Na, J. H. Kang, J. Park, J. Phys. Chem. B109, 2526 (2005).
29. Cheol Hyoun Ahn, Young Yi Kim, Dong Chan Kim, Sanjay Kumar Mohanta, and Hyung Koun Choa ,J. Appl. Phys. 105,013502 (2009).
30. S.W. Xuea,c, X.T. Zua,b,W.G. Zhengd, M.Y. Chena, X. Xianga, Physica B 382,201–204 ( 2006).