| 研究生: |
鄭明憲 Cheng, Ming-Hsien |
|---|---|
| 論文名稱: |
改良型柔切錯相半橋返馳式轉換器 Improved Soft-Switching Interleaved Half-Bridge Flyback Converters |
| 指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 錯相半橋返馳式轉換器 、零電壓切換 、零電流切換 |
| 外文關鍵詞: | interleaved half-bridge flyback converter, zero-voltage switching, zero-current switching |
| 相關次數: | 點閱:62 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高功率密度、小尺寸和高效率是電源轉換器的趨勢。傳統返馳式轉換器由於漏感的問題較適用於低功率的應用。錯相半橋返馳式的架構可以提供較高的輸出功率且可回收漏感能量降低功率開關的跨壓並箝位於輸入電壓。然而,主功率開關仍然承受高切換損失,而限制了轉換器的操作頻率。本論文針對錯相半橋返馳式轉換器提出了二種柔切的架構。藉由二組外加的輔助開關,使改良後的錯相半橋返馳式轉換器可以操作在零電壓切換,並經由輔助開關的反向並接二極體回收變壓器的漏感能量。而藉由外加的輔助電路,使改良後的錯相半橋返馳式轉換器其功率開關可以在寬負載範圍內達到零電流切換。
本論文中針對所提出之兩款改良型錯相半橋返馳式轉換器,其操作原理做一詳細的分析,並對達成零電壓切換和零電流切換條件做一詳細的推導。最後實作完成具零電壓切換及具零電流切換的錯相半橋返馳式轉換器原型電路,驗證理論分析並與現有的技術進行比較。實驗結果顯示所提出的零電壓及零電流架構在滿載時可以分別提升傳統的錯相半橋返馳式轉換器0.52% 和1.17%的效率。本論文所提出的零電壓切換及零電流切換錯相半橋返馳式轉換器可工作於超高切換頻率以提升轉換器之功率密度。
High power density, small size, and high efficiency are the trend of the power converters. The conventional flyback converter is the topology favored for low power applications because of the constraint of the leakage inductance. The interleaved structures can provide higher output power by recycling the leakage energy to clamp the voltage on power switches. However, the main power switches suffer from higher switching losses, which will limit operating frequency of the converter.
This dissertation proposes two soft-switching mechanisms for interleaved half-bridge flyback converters. By adding two additional auxiliary switches, the interleaved half-bridge flyback converter can operate with zero-voltage switching (ZVS), moreover, the anti-parallel diodes of the auxiliary switches can be used to recycle the leakage energy of the transformers. With additional auxiliary circuits, the power switches of the interleaved half-bridge flyback converter can be turned off with zero-current switching (ZCS) for wide range applications. The operating principles of the proposed ZVS and ZCS interleaved flyback converters are described. Finally, experimental prototypes of the interleaved flyback converters with ZVS and ZCS are implemented to verify the theoretical analyses and compare with state of art technologies. The experimental results show that the proposed ZVS and ZCS mechanisms can improve the efficiency of the conventional interleaved flyback converter by 0.52% and 1.17% at full load condition, respectively. The future of the proposed ZVS and ZCS interleaved flyback converters is for very high switching frequency applications to increase the power density of the converter.
[1]M. H. Cheng and T. J. Liang, “An atmospheric pressure plasma power supply with digital constant power control,” in Proc. IFEEC 2013 Conf., Jun. 2013, pp. 332–337.
[2]M. H. Cheng, T. J. Liang, and S. M. Chen, “A phase-shift resonant power system with novel plasma impedance measurement methodology for plasma cleaning applications,” in Proc. IFEEC 2017-ECCE ASIA Conf., Jun. 2017, pp. 689–703.
[3]I. Pressman, “Switching power supply design,” 2nd ed., McGraw Hill, 1999.
[4]C. H. Wu, T. J. Liang, K. H. Chen, W. Y. Huang, P. Y. Lin, Y. J. Lu, and J. S. Li, “Design and implementation of a novel interleaved flyback converter with leakage energy recycled,” in Proc. IEEE ECCE Conf., 2015, pp. 5888-5895.
[5]J. W. Kim, I. O. Lee, and G. W. Moon, “Series input parallel output interleaved flyback converter with regenerative leakage inductance energy,” in Proc. IEEE IPEMC Conf., 2012, pp. 1347-1352.
[6]M. Mohammadi, and E. Adib, “Lossless passive snubber for half bridge interleaved flyback converter,” IET Power Electronics, Vol. 7 pp. 1475-1481, Jun. 2014.
[7]N. Mohammadian, and M. R. Yazdani, “Half-bridge flyback converter with lossless passive snubber and interleaved technique,” IET Power Electronics, Vol. 11 pp. 239-245, Feb. 2018.
[8]M. K. Kazimierczuk, “Pulse-width modulated DC-DC power converters,” John Wiley & Sons, 2008.
[9]C. Wang, S. Xu, and W. Sun, “An accurate design method of RCD circuit for flyback converter considering diode reverse recovery,” in Proc. IEEE ICIT Conf., May. 2016, pp. 269-274.
[10]G. B. Koo, “AN-4147 design guidelines for RCD snubber of flyback converters,” Fairchild Semiconductor, 2006.
[11]Basso, “AN-1679/D How to deal with leakage elements in flyback converters,” ON Semiconductor, 2005.
[12]R. Petkov and L. Hobson, “Optimum design of a nondissipative snubber,” in Proc. IEEE PESC Recor. Conf., 1994, pp. 1188-1195.
[13]C. Ji, K. M. Smith, and K. M Smedley, “Cross regulation in flyback converters: solutions,” in Proc. IEEE IECON Conf., 1999, pp. 174-179.
[14]C. S. Liao and K. M. Smedley, “Design of high efficiency flyback converter with energy regenerative snubber,” in Proc. IEEE APEC Conf., 2008, pp. 796-800.
[15]J. Zhang, H. Zeng, and T. Jiang, “Analysis and design of energy regenerative snubber for transformer isolated converters,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 6030–6040, Nov. 2014.
[16]C. Wang, Z. Wang, and N. Zhang, “Design of two-switch flyback converter with CLC output filter,” in Proc. IEEE IPEMC Conf., 2009, pp. 358-361.
[17]J. Zhao and F. Dai, “Soft-switching two-switch flyback converter with wide range,” in Proc. IEEE ICIEA Conf., 2008, pp. 250-254.
[18]M. Turzynski, M. Haras, and G. Kostro, “A wide-band modeling of DC-DC two-transistor flyback converter,” in Proc. IEEE Int. Symp. on Industrial Electron., 2011, pp. 113–118.
[19]F. C. Lee, “High-frequency quasi-resonant converter technologies,” IEEE Proc., vol. 76, pp. 377-390, Apr. 1988.
[20]J. Y. Lee, G. W. Moon, H. J. Park, and M. J. Youn, “Integrated ZCS quasi-resonant power factor correction converter based on flyback topology,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 634- 643, Jul. 2000.
[21]G. C. Huang, T. J. Liang, and K. H. Chen, “Losses analysis and low standby losses quasi-resonant Flyback Converter Design,” IEEE Int. Symp. on Circuit and Syst., 2012, pp. 217-220.
[22]P. Hsieh, C. Chang, and C. Chen, “A primary-side-control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching,” in Proc. IEEE Energy Conversion Congress and Expo., Sep. 2013, pp. 3406-3412.
[23]K. H. Chen and T. J. Liang, “Design of quasi-resonant flyback converter control IC with DCM and CCM operation,” in Proc. 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), May 2014, pp. 2750–2753.
[24]J. Li, T. Liang, K. H. Chen, Y. Lu, and J. Li, “Primary-side controller IC design for quasi-resonant flyback converter” IEEE Energy Conversion Congress and Expo., Oct. 2015, pp. 5308-5315.
[25]M. Forouzesh, K. Yari, and A. Baghramian, “Single-switch high step-up converter based on coupled inductor and switched capacitor techniques with quasi-resonant operation,” IET Power Electronics, Vol. 10 pp. 240- 250, Feb. 2017.
[26]R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” IEEE Trans. Power Electronics, vol. 11, pp. 162-169, 1996.
[27]G. B. Koon and M. J. Youn, “A new zero voltage switching active clamp flyback converter,” in Proc. IEEE PESC Conf., 2005, pp.508-510.
[28]J. Zhang, X. huang, X. Wu, and Z. Qian, “A high efficiency flyback converter with new active clamp technique,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 1775-1785, Jul. 2010.
[29]B. R. Lin, H. K. Chiang, K. C. Chen, and D. Wang, “Analysis, design and implementation of an active clamp flyback converter,” in Proc. IEEE PEDS Conf., 2005, pp. 424-429.
[30]P. J. Grbovic, “High-voltage auxiliary power supply using series-connected MOSFETs and floating self-driving technique,” IEEE Trans. Industrial Electronics, vol. 56, pp. 1446-1455, May 2009.
[31]G. Spiazzi, P. Mattavelli, and A. Costabeber, “High step-up ratio flyback converter with active clamp and voltage multiplier,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3205-3214, Apr. 2011.
[32]Q. Mo, M. Chen, Z. Zhang, Y. Zhang, and Z. Qian, “Digitally controlled active clamp interleaved flyback converters for improving efficiency in photovoltaic grid-connected micro-inverter,” in Proc. IEEE Applied Power Electron. Conf. (APEC), Mar. 2012, pp. 555–562.
[33]Z. Y. Lu, and W. Chen, “Research on Magnetic Integration of Multi-phase Interleaving Flyback Converter,” in Proc. of the CSEE, 2009, pp. 41–46.
[34]B. Tamyurek, and B. Kirimer, “An interleaved flyback inverter for residential photovoltaic applications,” in Proc. IEEE Power electronics and applications Conf. (EPE), Sep. 2013, pp. 1–10.
[35]S. Tan, P. Lin, C. Hu, L. Chen, and D. Xu, “Interleaved Flyback Micro-inverter with SiC MOSFET,” in Proc. IEEE Power electronics and applications Conf. (PEAC), Nov. 2014, pp. 285–290.
[36]C. Chang and M. A. Knights, “Interleaving technique in distributed power conversion systems,” IEEE Trans. circuit and system I: Fundamental Theory and Applications, vol. 42, pp. 245-251, May 1995.
[37]D. J. Perreault and J. G. Kassakian, “Distributed interleaving of paralleled power converters,” IEEE Trans. Circuit and Systems I: Fundamental Theory and Applications, vol. 44, pp. 728-734, Aug. 1997.
[38]H. Wang, C. Gong, H. Ma, and Y. Yan, “Research on a novel interleaved flyback DC/DC converter,” in Proc. IEEE ICIEA Conf., 2006, pp. 1-5.
[39]Y. K. Lo and J. Y. Lin, “Active-clamping ZVS flyback converter employing two transformers,” IEEE Trans. Power Electronics, vol. 22, pp. 2416-2423, Nov. 2007.
[40]J. Y. Gu, H. F. Wu, G. C. Chen, and Y. Xing, “Research on photovoltaic grid-connected inverter based on soft-switching interleaved flyback converter,” in Proc. IEEE Industrial electronics and applications Conf. (ICIEA), Jun. 2010, pp. 1209–1214.
[41]C. P. Henze, H. C. Martin, and D. W. Parsley, “Zero-voltage switching in high frequency power converters using pulse width modulation,” in Proc. IEEE Applied Power Electron. Conf. (APEC), Feb. 1988, pp. 33–40.
[42]B. R. Lin, H. K. Chiang, and C. Y. Cheng, “Analysis and implementation of an interleaved ZVS bi-flyback converter,” IET Power Electronics, Vol. 3 pp. 259- 268, Mar. 2010.
[43]S. Y. Tseng, C. T. Hsieh, and C. M. Yang, “Interleaved flyback converter with turn-on/off snubber for poultry stunning applications,” in Proc. IEEE Applied Power Electron. Conf. (APEC), Feb. 2008, pp. 1999–2005.
[44]T. Anuradha, and V. S. Kumar, “Design and analysis of high efficiency soft switched interleaved flyback converter,” in Proc. IEEE Power, Energy and Control Conf. (ICPEC), Feb. 2013, pp. 325–328.
[45]Y. C. Hsieh, M. R. Chen, and H. L. Cheng, “Zero-voltage-switched interleaved flyback onverter,” in Proc. IEEE Telecommunication Energy Conf., 2009, pp. 1-6.
[46]W. Li, J. Shi, M. Hu, and X. He, “An isolated interleaved active-clamp ZVT flyback-boost converter with coupled inductors with coupled inductor,” in Proc. IEEE Power Electronic and Applications Conf., 2007, pp. 1-9.
[47]A. Thangavelu, V. Senthilkumar, and D. Parvathyshankar, “Zero voltage switching-pulse width modulation technique-based interleaved flyback converter for remote power solutions,” IET Power Electronics, Vol. 9 pp. 1381- 1390, Jun. 2016.
[48]W. Li, J. Shi, M. Hu, and X. He, “An isolated interleaved active-clamp ZVT flyback-boost converter with coupled inductors,” in Proc. IEEE Power Electronic and Applications Conf., 2007, pp. 1- 9.
[49]H. L. Cheng, Y. N. Chang, H. C. Yen, C. C. Hua, and P. Y. Su, “A novel interleaved flyback-typed converter with ZVS operation,” in Proc. IEEE Power Electronics Conf., 2016, pp. 1-6.
[50]W. Li, and X. He, “Inherent clamp flyback–buck converter with winding cross-coupled inductors,” IET power electronics, vol. 4, no. 1, pp. 111-121, 2011.
[51]J. Zhao, H. Zhao, and F. Dai, “A novel ZVS PWM interleaved flyback converter,” in Proc. IEEE ICIEA Conf., 2007, pp. 337- 341.
[52]Y. C. Hsieh, M. R. Chen, and H.-L. Cheng, “An interleaved flyback converter featured with zero-voltage transition,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 79–84, Jan. 2011.
[53]K. Soltanzadeh, H. Khalilian, and M. Dehghani, “Analysis, design and implementation of a zero voltage switching two-switch CCM flyback converter,” IET Circuits, Devices & Systems, Vol. 10 pp. 20- 28, Jan. 2016.
[54]N. T. Quang, H. J. Chiu, and Y. K. Lo, “Zero-voltage switching current-fed flyback converter for power factor correction application,” IET Power Electronics, Vol. 7 pp. 1971- 1978, Nov. 2013.
[55]Z. Zhang, M. Chen, and W. Chen, “Analysis and implementation of phase synchronization control strategies for BCM interleaved flyback microinverters,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5921- 5932, Jan. 2014.
[56]M. Mohammadi, E. Adib, and H. Farzanehfard, “Lossless passive snubber for double ended flyback converter with passive clamp circuit,” IET Power Electronics, Vol. 7 pp. 245- 250, Feb. 2014.
[57]M. A. Rezaei, K. J. Lee, and A. Q. Huang, “A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 318- 327, Mar. 2016.
[58]T. H. Hsia, H. Y. Tsai, D. Chen, M. Lee, and C. S. Huang, “Interleaved active-clamping converter with ZVS/ZCS features,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 29–37, Jun. 2011.
[59]Z. Fang, T. Cai, S. Duan, and C. Chen, “Optimal design methodology for LLC resonant converter in battery charging applications based on time-weighted average efficiency,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5469- 5483, Oct. 2015.
[60]C. C. Hua, Y. H. Fang, and C. W. Lin, “LLC resonant converter for electric vehicle battery chargers,” IET Power Electronics, Vol. 7 pp. 2369- 2376, Oct. 2014.
[61]B. Mahdavikhah and A. Prodic, “A digitally controlled DCM flyback Converter with A low-volume dual-mode soft switching circuit,” in Proc. IEEE Applied Power Electronics Conf., 2014, pp. 63-68.
校內:2023-08-21公開