| 研究生: |
簡維德 Chien, Wei-Te |
|---|---|
| 論文名稱: |
心電信號壓縮演算法基於稀疏表示編碼 ECG Compression Algorithm Based on Sparse Representation Encoding |
| 指導教授: |
雷曉方
Lei, Sheau-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 稀疏編碼 、心電信號壓縮 、適應性字典 、誤差導向最佳化心電壓縮 |
| 外文關鍵詞: | Electrocardiography, Compression algorithms, OMP, Sparsity coding |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心電圖為醫生在心臟疾病診斷上重要的生理訊號參考。近年來,針對心血管慢性疾病患者的心電訊號監控和個人居家醫療照護需求日漸增加,以偶發性心率不整患者而言,通常會安排24至72小時的不間斷的收集方式,才可達到協助醫師診斷病人的身體狀態。為了避免心電信號資訊因為長期監測而產生的龐大資料量造成網路頻寬與儲存空間的負擔,因此提出一個在考慮重建品質的前提下對心電信號進行壓縮相對重要,以免造成醫師誤判。心電信號壓縮除資料量的減少,更重要的是要能同時保留住心電圖中重要的波形特徵,作為醫生診斷依據。
本演算法提出一個考慮誤差(PRD)下的高壓縮倍率心電信號壓縮方法,心電信號壓縮演算法採用稀疏編碼(Sparse coding)為核心基礎,結合適應性字典(Adaptive dictionary)與誤差控制(Error control)方式等,使心電信號在所規定之PRD範圍中可得最稀疏解。本論文提出的演算法採用稀疏表示結合算術編碼的方式,並藉由適應性稀疏度K取代壓縮感知中固定K值求稀疏解的方式,能在固定誤差下創造更高的稀疏度,再配合算術編碼進行壓縮。
在壓縮流程中,首先將心電信號根據R波所在位置(index)進行分段,去掉各別區段的平均值後,將各個R-R區段由中間做零值內插(Zero-padding),使用前720組內插後的R-R區段建成初始字典。再利用OMP(Orthogonal Matching Pursuit)針對信號進行稀疏分解,接著根據預先設定之百分比均方根誤差(Percent Root-Mean-Square Difference, PRD)進行改變稀疏度的反復迭代,尋找最佳化之稀疏度(K)。並將稀疏係數值量化後與其餘必要資訊進行算術編碼法(Arithmetic coding)等壓縮編碼技術,來產生良好的壓縮比與壓縮品質。所提出的壓縮演算法使用MIT-BIH 心率不整資料庫的全部48組心率不整資料作為測試訊號,平均壓縮效果較現有文獻效果高出2-3倍。
The ECG is an electronic signal for recording the heartbeat of a patient. This signal assists physicians to diagnose the patient health from his/her cardiovascular system. Because of long hours of uninterrupted monitoring of cardiovascular activity required for medical purposes, it is essential that the effective compression of ECG waveforms requires for transmission and storage applications due to the huge amount of signal data. In this paper, a novel compression algorithm of ECG signals is proposed based on sparse decomposition and arithmetic coding theorems. The experimental results from the MIT-BIH arrhythmia database show that the proposed algorithm achieves 2-3 times higher than other existing algorithms in the compression performance.
[1] “行政院衛生署. Available: http://www.mohw.gov.tw/CHT/Ministry/DisplayFile.aspx?url=http://www.mohw.gov.tw/MOHW_Upload/doc/104%e5%b9%b4%e6%ad%bb%e5%9b%a0%e7%b5%b1%e8%a8%88%e7%b5%90%e6%9e%9c%e5%88%86%e6%9e%90_0056044002.odt&name=104%e5%b9%b4%e6%ad%bb%e5%9b%a0%e7%b5%b1%e8%a8%88%e7%b5%90%e6%9e%9c%e5%88%86%e6%9e%90_0056044002.odt.”
[2] S. Bao, C. P. Carmen, L. Shen, and Y. Zhang, “Authenticated symmetric-key establishment for medical body sensor networks,” Journal of Electronics (China), vol. 24, no. 3, pp. 421-427, 2007.
[3] J.-B. Gong, R. Wang, and L. Cui, “Research advances and challenges of body sensor network (BSN),” Journal of Computer Research and Development, vol. 47, no. 5, pp. 737-753, 2010.
[4] Y. Zhang, L. Sun, H. Song, and X. Cao, “Ubiquitous WSN for healthcare: Recent advances and future prospects,” IEEE Internet of Things Journal, vol. 1, no. 4, pp. 311-318, 2014.
[5] 張慈映, “心電圖計應用市場分析,” 工研院產經中心, IEK, 2009.
[6] 謝夢蝶, “遠距照護產業營運模式-以心電圖監測為例,” 2010.
[7] “IMS Research. Available: http://www.imsresearch.com.”
[8] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection,” Journal of Signal Processing Systems, vol. 79, no. 2, pp. 179-188, 2015.
[9] A. J. Camm, M. Malik, J. Bigger, G. Breithardt, S. Cerutti, R. J. Cohen, P. Coumel, E. L. Fallen, H. L. Kennedy, and R. E. Kleiger, “Heart rate variability. Standards of measurement, physiological interpretation, and clinical use,” European heart journal, vol. 17, no. 3, pp. 354-381, 1996.
[10] D. Bansal, M. Khan, and A. Salhan, "A review of measurement and analysis of heart rate variability." pp. 243-246.
[11] “除顫器,A+醫學百科. Available: http://cht.a-hospital.com/w/除顫器.”
[12] B.-U. Kohler, C. Hennig, and R. Orglmeister, “The principles of software QRS detection,” IEEE Engineering in Medicine and Biology Magazine, vol. 21, no. 1, pp. 42-57, 2002.
[13] B. C. YU, C. S. Liu, M. Lee, C. Y. Chen, and B. N. Chiang, “A Nonlinear Digital Filter For Cardiac QRS Complex Detection,” Journal of Clinical Engineering, vol. 10, no. 3, pp. 193-201, 1985.
[14] G. B. Moody, and R. G. Mark, “The impact of the MIT-BIH arrhythmia database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45-50, 2001.
[15] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet,” Circulation, vol. 101, no. 23, pp. e215-e220, 2000.
[16] R. E. Hermes, D. B. Geselowitz, and G. C. Oliver, “Development, distribution, and use of the American Heart Association database for ventricular arrhythmia detector evaluation,” Computers in cardiology, vol. 7, pp. 263-266, 1980.
[17] A. Taddei, A. Biagini, G. Distante, M. Emdin, M. Mazzei, P. Pisani, N. Roggero, M. Varanini, R. Mark, and G. Moody, "The European ST-T database: development, distribution and use." pp. 177-180.
[18] B. Singh, A. Kaur, and J. Singh, “A Review of ECG Data Compression Techniques,” International Journal of Computer Applications, vol. 116, no. 11, 2015.
[19] S. G. Mallat, and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transactions on signal processing, vol. 41, no. 12, pp. 3397-3415, 1993.
[20] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on information theory, vol. 52, no. 2, pp. 489-509, 2006.
[21] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory, vol. 52, no. 4, pp. 1289-1306, 2006.
[22] E. J. Candes, and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?,” IEEE transactions on information theory, vol. 52, no. 12, pp. 5406-5425, 2006.
[23] E. J. Candès, and M. B. Wakin, “An introduction to compressive sampling,” IEEE signal processing magazine, vol. 25, no. 2, pp. 21-30, 2008.
[24] E. J. Candes, and T. Tao, “Decoding by linear programming,” IEEE transactions on information theory, vol. 51, no. 12, pp. 4203-4215, 2005.
[25] D. L. Donoho, and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization,” Proceedings of the National Academy of Sciences, vol. 100, no. 5, pp. 2197-2202, 2003.
[26] E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9, pp. 589-592, 2008.
[27] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on pure and applied mathematics, vol. 59, no. 8, pp. 1207-1223, 2006.
[28] T. T. Cai, L. Wang, and G. Xu, “New bounds for restricted isometry constants,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4388-4394, 2010.
[29] E. Candes, and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse problems, vol. 23, no. 3, pp. 969, 2007.
[30] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation, vol. 28, no. 3, pp. 253-263, 2008.
[31] S. Boyd, and L. Vandenberghe, Convex optimization, p.^pp. 21-22: Cambridge university press, 2004.
[32] R. G. Baraniuk, “Compressive sensing,” IEEE signal processing magazine, vol. 24, no. 4, 2007.
[33] E. Amaldi, and V. Kann, “On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems,” Theoretical Computer Science, vol. 209, no. 1, pp. 237-260, 1998.
[34] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition." pp. 40-44.
[35] J. A. Tropp, and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Transactions on information theory, vol. 53, no. 12, pp. 4655-4666, 2007.
[36] M. Elad, and A. M. Bruckstein, “A generalized uncertainty principle and sparse representation in pairs of bases,” IEEE Transactions on Information Theory, vol. 48, no. 9, pp. 2558-2567, 2002.
[37] M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4311-4322, 2006.
[38] K. Skretting, and K. Engan, “Recursive least squares dictionary learning algorithm,” IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 2121-2130, 2010.
[39] O. Escalona, R. Mitchell, D. Balderson, and D. W. Harron, “Fast and reliable QRS alignment technique for high-frequency analysis of signal-averaged ECG,” Medical and Biological Engineering and Computing, vol. 31, no. 1, pp. S137-S146, 1993.
[40] R. Jané, H. Rix, P. Caminal, and P. Laguna, “Alignment methods for averaging of high-resolution cardiac signals: a comparative study of performance,” IEEE Transactions on Biomedical Engineering, vol. 38, no. 6, pp. 571-579, 1991.
[41] R. Rajagopalan, and A. Dahlstrom, “A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram,” World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical and Pharmaceutical Engineering, vol. 8, no. 3, pp. 134-138, 2014.
[42] V. M. DePinto, "Filter and method for filtering baseline wander," Google Patents, 1993.
[43] A. Adamo, G. Grossi, R. Lanzarotti, and J. Lin, “ECG compression retaining the best natural basis k-coefficients via sparse decomposition,” Biomedical Signal Processing and Control, vol. 15, pp. 11-17, 2015.
[44] J. Chen, F. Wang, Y. Zhang, and X. Shi, “ECG compression using uniform scalar dead-zone quantization and conditional entropy coding,” Medical Engineering & Physics, vol. 30, no. 4, pp. 523-530, 2008.
[45] J. Rissanen, and G. G. Langdon, “Arithmetic coding,” IBM Journal of research and development, vol. 23, no. 2, pp. 149-162, 1979.
[46] W. Dai, and O. Milenkovic, Subspace pursuit for compressive sensing: Closing the gap between performance and complexity, ILLINOIS UNIV AT URBANA-CHAMAPAIGN, 2008.
[47] D. Needell, and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301-321, 2009.
[48] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An Interior-Point Method for Large-Scale $ell_1 $-Regularized Least Squares,” IEEE journal of selected topics in signal processing, vol. 1, no. 4, pp. 606-617, 2007.
[49] D. Needell, and R. Vershynin, “Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit,” IEEE Journal of selected topics in signal processing, vol. 4, no. 2, pp. 310-316, 2010.
[50] Y. Zigel, A. Cohen, and A. Katz, “The weighted diagnostic distortion (WDD) measure for ECG signal compression,” Biomedical Engineering, IEEE Transactions on, vol. 47, no. 11, pp. 1422-1430, 2000.
[51] U. Pratap, and R. K. Sunkaria, "ECG compression using Compressed Sensing with Lempel-Ziv-Welch Technique." pp. 863-867.
[52] R. Kumar, and I. Saini, “Empirical wavelet transform based ECG signal compression,” IETE journal of research, vol. 60, no. 6, pp. 423-431, 2014.
[53] J. Ma, T. Zhang, and M. Dong, “A novel ECG data compression method using adaptive fourier decomposition with security guarantee in e-health applications,” IEEE journal of biomedical and health informatics, vol. 19, no. 3, pp. 986-994, 2015.
[54] S. Lee, J. Kim, and M. Lee, “A real-time ECG data compression and transmission algorithm for an e-health device,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 9, pp. 2448-2455, 2011.
校內:2022-08-01公開