簡易檢索 / 詳目顯示

研究生: 林義庭
Lin, Yi-Ting
論文名稱: 應用耦合電感及增壓電路之新型高升壓比轉換器
A New High Voltage-Gain Converter with Coupled-Inductors and Voltage Multiplier
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 63
中文關鍵詞: 電流饋入高升壓轉換器耦合電感增壓電路
外文關鍵詞: Current-Fed, High Step-Up Converter, Coupled-Inductors, Voltage Multiplier
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於近期再生能源應用於併網系統地快速成長,為有效率地利用其能源並提升系統之可靠度,電源轉換器近年來被廣泛地探討與研究。然而,再生能源系統通常需一升壓轉換器將電壓提升至滿足負載需求或併網型系統應用。
    因此,本論文提出一新型電流饋入高升壓比、高效率之轉換器應用於需低漣波輸出電流與高可靠度的再生能源系統。基於電流饋入型之特點,其低電流漣波可省卻再生能源輸出側之電解電容並增加整體系統之穩定性及可靠度。並透過耦合電感為基礎之升壓模組應用,轉換器之開關應力能有效降低,且耦合電感之漏感能量回收可進而達到電壓箝位與升壓之目的,因此,轉換器可以選用低導通電阻的開關來減少導通損與元件成本。並且,利用漏感特性也可有效地減緩二極體的逆向回復問題。
    本論文詳述轉換器的模式分析、元件應力與參數設計,並實際製作一額定功率300 W、輸入電壓30到42 V、輸出電壓400 V的升壓轉換器驗證本論文所提電路架構之可行性。由實驗結果可知,應用單開關之轉換器不僅簡化電路架構亦可增加系統可靠度,而此架構之最高轉換效率達95.63 %,且於滿載情況下,轉換效率仍達92.98 %。

    High step-up techniques have been explored and developed for industrial applications over the past decades. Especially for renewable energy systems, the relatively low voltage must be boosted to high one for grid-connection applications.
    In this thesis, a new current-fed, high step-up converter integrating coupled-inductors with voltage multiplier cell is proposed for applications in renewable energy systems. With the current-fed configuration, continuous low-ripple input current can be achieved, which can avoid the use of input electrolytic capacitor to enhance the reliability of the whole system. Also, by employing the voltage step-up cell, the voltage stress of the main switch is reduced and the leakage energy of coupled-inductors can be recycled to the output capacitor. Therefore, the low-voltage rated MOSFETs with low RDS_ON can be used to reduce the conduction losses. In addition, the reverse-recovery problem of the diodes is alleviated effectively by the leakage inductance, as designed in the proposed circuit.
    The operation principles, the voltage stress analyses, and the design guidelines of the components used in the proposed are discussed in detail in the thesis. Finally, a laboratory prototype circuit of 300 W, 400 V output voltage with input voltage ranging from 30 to 42 V is implemented to verify the effectiveness of the proposed converter. The results show that only one MOSFET is employed not only to simplify the circuit configuration, but improve the system reliability. A maximal efficiency of 95.63 % at 90 W and 92.98 % at the full load have been demonstrated in the experiments.

    摘 要...I ABSTRACT...II 誌 謝...III LIST OF FIGURES...VII LIST OF TABLES...X CHAPTER 1. INTRODUCTION...1 1.1. Backgrounds and Motivations...1 1.2. Literature Review...2 1.3. Research Objectives and Contributions...4 1.4. Organization of the Thesis...5 CHAPTER 2. REVIEW OF SINGLE SWITCH HIGH STEP-UP DC-DC CONVERTERS...6 2.1. Introduction...6 2.2. Boost Converter...6 2.3. Review of High Step-Up Techniques...9 2.3.1. Cascade Technique of Step-Up Converter...9 2.3.2. Voltage-Lift Technique of Step-Up Converter...10 2.3.3. Switched-Capacitor Technique of Step-Up Converter...11 2.3.4. Coupled-Inductors Technique of Step-Up Converter...12 2.3.5. Output-Voltage Stacking technique of Step-Up Converter...13 2.3.6. Current-Fed Technique of Step-Up Converter...14 2.3.7. Mixed Techniques of Step-Up Converter...14 2.4. Summary...17 CHAPTER 3. THE PROPOSED HIGH STEP-UP CONVERTER...18 3.1. The Proposed High Step-Up Converter...18 3.2. Operating Principles of the Proposed Converter...19 3.3. Analysis and Design of the Proposed Converter...27 3.3.1. Voltage Gain Expression...27 3.3.2. Voltage Stress Analysis...29 3.3.3. Design of Magnetizing Inductor in CCM...30 3.3.4. Design of Turns Ratio of Coupled-Inductors...31 3.3.5. Input Inductor Design...33 3.3.6. Capacitor Design...33 3.3.7. Comparisons of Voltage Gain with Existing Converters...34 3.4. Analysis and Control of the Proposed Converter...35 3.4.1. Control of the Proposed Converter...35 3.4.2. Output Voltage Feedback Circuit Design...37 3.4.3. Switch Driver Circuit...38 3.5. Summary...39 CHAPTER 4. SIMULATION AND EXPERIMENTAL RESULTS...41 4.1. Specification of the Proposed Converter...41 4.2. Simulated and Experimental Verification...43 4.3. Summary...57 CHAPTER 5. CONCLUSIONS...58 5.1. Summary...58 5.2. Future works...59 REFERENCES...60

    [1]J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. P. Guisado, M. Á. M. Prats, J. I. León, and N. Moreno-Alfonso, “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1002-1016, Jun 2006.
    [2]X. Yu, M.R. Starke, L.M. Tolbert, and B. Ozpineci, “Fuel cell power conditioning for electric power applications: a summary,” IET Electric Power Applications, vol. 1, no. 5, pp. 643-656, Sep 2007.
    [3]W. H. Li, and X. N. He, “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1239–1250, Apr 2011.
    [4]S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A Safety Enhanced, High Step-Up DC–DC Converter for AC Photovoltaic Module Application,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1809–1817, Apr 2012.
    [5]T. J. Liang, and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEE Proceedings Electric Power Applications, vol. 152, no. 2, pp. 217–225, Mar. 2005.
    [6]B. R. Lin and J. J. Chen, “Analysis and implementation of a soft switching converter with high-voltage conversion ratio,” IET Transactions on Power Electronics, vol. 1, no. 3, pp. 386–394, Sep. 2008.
    [7]J. Leyva-Ramos, M.G. Ortiz-Lopez, L.H. Diaz-Saldierna, and J.A. Morales-Saldana, “Switching regulator using a quadratic boost converter for wide DC conversion ratios,” IET Power Electronics, vol. 2, no. 5, pp. 605-613, Sep 2009.
    [8]M.G. Ortiz-Lopez, J. Leyva-Ramos, E.E. Carbajal-Gutierrez, and J.A. Morales-Saldana, “Modelling and analysis of switch-mode cascade converters with a single active switch,” IET Power Electronics, vol. 1, no. 4, pp. 478-487, Dec 2008.
    [9]F. L. Luo, “Seven self-lift DC-DC converters, voltage lift technique,” IEE Electric Power Applications, vol. 148, no. 4, pp. 329-338, Jul 2001.
    [10]F. L. Luo, H. Ye, and R. M.H., “Super-lift Luo-converters,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 425-430, 2002.
    [11]F. L. Luo, and H. Ye, “Positive output super-lift converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 105-113, 2003.
    [12]L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC–DC Converters with High Step-Up Voltage Gain,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3144-3152, Aug 2009.
    [13]O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up Switching-Mode Converter with High Voltage Gain Using a Switched-Capacitor Circuit,” IEEE Transactions on Circuits and Systems I, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
    [14]B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-Capacitor /Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters,” IEEE Transactions on Circuits and Systems, vol. 55, no. 2, pp. 687-696, Mar 2008.
    [15]E.H. Ismail, M.A. Al-Saffar, and A.J. Sabzali, “High Conversion Ratio DC–DC Converters with Reduced Switch Stress,” IEEE Transactions on Circuits and Systems, vol. 55, no.7 , pp.2139-2151, Aug 2008.
    [16]Y. P. Hsieh, J. F. Chen, T. J. Lin, and L. S. Yang, “Novel High Step-Up DC–DC Converter for Distributed Generation System,” IEEE Transactions on Industrial Electronics, pp. 1473-1482, Apr 2013.
    [17]T. J. Lin, J. F. Chen, Y. P. Hsieh, “A novel high step-up DC-DC converter with coupled-inductor,” 2013 Future Energy Electronics Conference (IFEEC), pp. 777-782, 2013.
    [18]T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “An improved boost converter with coupled inductors and buck-boost type of active clamp,” IAS 2005 Industry Applications Conference, vol. 1, pp. 639-644, 2005.
    [19]Y. P. Hsieh, J. F. Chen, T. J. Lin, and L. S. Yang, “Novel High Step-Up DC–DC Converter for Distributed Generation System,” IET Transactions on Power Electronics, vol. 5, no.11, pp. 11-21,Jan 2012.
    [20]S. M. Chen, T. J. Liang, and K. R. Hu, “Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System,” IET Transactions on Power Electronics, vol. 28, no.4, pp. 1764-1772, Apr 2013.
    [21]Q. Zhao, F. Tao, and F. C. Lee, “A Front-end DC/DC Converter for Network Server Applications,” IEEE Power Electronics Specialists Conference, vol. 3, pp. 1535-1539, 2001.
    [22]Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc–dc converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 65–73, Jan. 2003.
    [23]Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel High Step-Up DC–DC Converter with Coupled-Inductor and Switched-Capacitor Techniques for a Sustainable Energy System,” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3481–3490, Dec. 2011.
    [24]Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel High Step-Up DC–DC Converter with Coupled-Inductor and Switched-Capacitor Techniques,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 998-1007, Feb 2012.
    [25]K. C. Tseng, and C. C. Huang, “Novel High Step-Up DC–DC Converter for Fuel Cell Energy Conversion System,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2007-2017, Jun 2010.
    [26]K. C. Tseng, and C. C. Huang, “Ultra High Step-Up Converters with Reduced Diode Stresses Sharing,”2013 IEEE International Symposium on Next-Generation Electronics (ISNE), pp. 513-516, 25-26 Feb 2013.
    [27]W. H. Li, W. C. Li, Y. Deng, and X. N. He, “Single-Stage Single-Phase High-Step-Up ZVT Boost Converter for Fuel-Cell Microgrid System,” IEEE Transactions on Power Electronics, vol. 25, no. 12, pp. 3057–3065, Dec. 2010.
    [28]Y. Zhao, W. H. Li, and X. N. He, “Single-Phase Improved Active Clamp Coupled-Inductor-Based Converter with Extended Voltage Doubler Cell,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 2869–2878 Jun. 2012.
    [29]Y. Deng, Q. Rong, W. Li, Y. Zhao, J. Shi, and X. He, “Single-switch high step-up converters with built-in transformer voltage multiplier cell,” IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3557–3567, Aug. 2012.
    [30]J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High Boost Converter Using Voltage multiplier,” IEEE Industrial Electronics Society, 2005, 2005.
    [31]J. H. Lee, D. H. Kim, S. Mun, M. T. Nguyen, V. T. Tran, and J. H. Park, “Series connected forward-flyback converter for high step-up power conversion,” IEEE International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), 2011, pp. 3037–3040, 2011.
    [32]S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A Cascaded High Step-Up DC–DC Converter with Single Switch for Microsource Applications,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1146-1153, Apr 2011.
    [33]K. B. Park, G. W. Moon, and M. J. Youn, “High Step-Up Boost Converter Integrated with A Transformer-Assisted Auxiliary Circuit Employing Quasi Resonant Operation,” IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 1974–1984, Apr. 2012.
    [34]H. T. Yang, J. T. Liao, and J. Y. Lee, “Implementation of A Current-Fed High Step-Up DC-DC Converter,” IEEE Trondheim PowerTech, 2011, pp. 1–6, 2011.
    [35]X. Hu, and C. Gong, “A High Voltage Gain DC–DC Converter Integrating Coupled-Inductor and Diode–Capacitor Techniques,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 789-800, Feb 2014.
    [36]Microchip Technology Inc, http://www.microchip.com/.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE