| 研究生: |
謝奕平 Hsieh, Yi-Ping |
|---|---|
| 論文名稱: |
應用於高升壓比直流對直流轉換器之耦合電感技術 Coupled-Inductor Technique for High Step-Up DC-DC Converters |
| 指導教授: |
陳建富
Chen, Jiann-Fuh |
| 共同指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 高升壓比 、耦合電感 、切換式電容 |
| 外文關鍵詞: | High step-up, coupled-inductor, switched-capacitor |
| 相關次數: | 點閱:114 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將升壓轉換器以電壓源及電流源的系統概念方式分析,並利用耦合電感在開關切換時會改變二次側的電壓極性的特性,創造出可調整的電壓源以及電流源,將此耦合電感搭配切換式電容以及電壓提升技術,使得二次側電容具有並聯充電串聯放電方式來建立高壓輸出,以此概念設計出兩種升壓方法,之後將目前常見之高升壓轉換器以系統化方式分析,搭配所提出的耦合電感方法,提出四種高升壓轉換器應用架構。傳統上利用耦合電感的高升壓比轉換器必須藉由多組繞組或者較大的圈數來達到高升壓的作用,造成漏感變大及導通損增加,而疊接多級電容來使輸出電壓變高的升壓方式,電容能量傳遞上的損失會較大。本文所提升壓方法所設計的高升壓比轉換器,與傳統比較具有更高的電壓轉換比,因此轉換器開關上的電壓應力也較低,可選擇低導通損失的開關元件,並且在一樣升壓倍數下與傳統比較可使用較少匝數及較少電容,此外由於所提出四組新型高升壓轉換器皆具有被動式箝位電路,漏感的能量可以被回收,轉換器具有更高效率,於硬體電路實現上,此種方法所設計的轉換器,只需一個開關,控制電路設計簡單,且和輸出輸入端共地,不需額外增加開關的隔離驅動電路。於此論文中會詳述此種設計方法之演變以及所提出的轉換器應用例之模式分析以及詳細推導此轉換器的臨界導通模式和電壓轉換比,最後,將會實現轉換器之雛型電路以驗證理論之可行性,實驗測試中包含了轉換器之電壓,半導體元件的電壓應力以及轉換器的效率,此種轉換器可以應用於太陽能電池之前級架構以及燃料電池的前級架構和不斷電系統等等。
In this dissertation, the step-up converters are analyzed with voltage source and current source. When switch is turned on and off, the coupled-inductor changes the polarity on the secondary-side. Adjustable voltage source and current source are created. According to the characteristic, the switched-capacitor and voltage-lift techniques can be combined with it. Two step-up methods are proposed. Then, systematize high step-up converters with the step-up methods, five high step-up converters are proposed. Conventionally, the high step-up converters use more turns ratio to achieve high step-up gain. The leakage inductor is large and efficiency is low. Some high step-up converters use a lot of capacitors to add the step-up gain. The more stage transition is used and efficiency is low. High step-up converters used twp proposed methods to design can have high voltage gain than others. Thus, fewer turns ratio and fewer capacitors are used to achieve high step-up gain. In addition, all of four converters have lossless passive snubber circuit, the energy of leakage inductor is recycled. The low on-resister can be adopted and conduction loss is reduced. High efficiency is achieved. In hardware implementation, four converters are easy to realize because theses converters have only one switch and don’t need high-side driver. The control circuit is also easy to design. The mode analysis is described clearly in this dissertation. Also, the step-up gain and boundary condition of these converters are analyzed and calculated. Finally, the prototypes of five converters are built to demonstrate the performance which includes the voltage gain, voltage stress of semiconductors, efficiency and boundary condition. These high step-up converters are suitable for becoming front-end stage of solar system, full cell converter, uninterruptible power supply.
Reference
[1] C. L. Chen, Y. W, J. S. Lai, Y.S. Lee, and D. Martin, “Design of parallel inverters for smooth mode transfer microgrid applications,” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 6-15, Jan. 2010
[2] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation of current controllers for distributed power generation systems,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 654-664, Mar. 2009.
[3] A.M. Salamah, S.J. Finney, and B.W. Williams, “Single-phase voltage source inverter with a bidirectional buck–boost stage for harmonic injection and distributed generation,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 376-387, Feb. 2009.
[4] T. Shimizu, K. Wada, and N. Nakamura, “Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1264-1272, Sep. 2006.
[5] J. M. Kwon and B. H. Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 108-115, Jan. 2009.
[6] L. Palma, M. H. Todorovic, and P. Enjeti, “A high gain transformer-less DC-DC converter for fuel-cell applications,” in Proc. IEEE PESC, pp. 2514-2520, 2005.
[7] L. S. Yang, T. J. Liang, and J. F. Chen, “Transformer-less DC-DC converter with high voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
[8] J.A. Carr, D. Hotz, J.C. Balda, H.A. Mantooth, A. Ong, and A. Agarwal, “Assessing the impact of SiC MOSFETs on converter interfaces for distributed energy resources,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 260-270, Jan. 2009.
[9] N. P. Papanikolaou and E. C. Tatakis, “Active voltage clamp in flyback converters operating in CCM mode under wide load variation,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 632-640, Jun. 2004.
[10] F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105-113, Jan. 2003.
[11] F. L. Luo, “Six self-lift DC–DC converters, voltage lift technique,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268-1272, Dec. 2001.
[12] F. L. Luo and H. Ye, “Positive output multiple-lift push–pull switched-capacitor Luo-converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594-602, Jun. 2004.
[13] Fan Zhang, Lei Du, Fang Zheng Peng, and Zhaoming Qian, “A new design method for high-power high-efficiency switched-capacitor dc–dc converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
[14] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Circuits and Systems I, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[15] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits and Systems I, vol. 55, no. 2, pp. 687-696, Mar. 2008.
[16] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capapcitor (SC)/Switched-inductor (SL) structures for getting hybrid step-down CUK/ZETA/SEPIC converters,” in Proc. IEEE ISCAS, pp. 5063-5066, 2006.
[17] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched coupled-inductor cell for DC-DC converters with very large conversion ratio,” in Proc. IEEE IECON Conf., pp. 2366-2371, 2006.
[18] Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc-dc converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65-73, Jan. 2003.
[19] B. R. Lin and F. Y. Hsieh, “Soft-switching zeta–flyback converter with a buck–boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2813-2822, Oct. 2007.
[20] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck–boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154-162, Jan. 2008.
[21] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon, and M. J. Youn, “Integrated boost-sepic converter for high step-up applications,” in Proc. Power Electronics Specialists Conf., Rohode, Greece, pp. 944-950, 2008.
[22] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 151, no. 2, pp. 182-190, Mar. 2004.
[23] K. C. Tseng and T. J. Liang, “Analysis of intergrated boost-flyback step-up converter,” IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 152, no. 2, pp. 217-225, 2005.
[24] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025-1035, Sep. 2005.
[25] R. J. Wai and R. Y. Duan, “High-efficiency DC/DC converter with high voltage gain,” IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 152, no.4, pp. 793-802, Jul. 2005.
[26] R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3702-3714, Oct. 2008.
[27] R. J. Wai, L. W. Liu, and R. Y. Duan, “High-efficiency voltage-clamped DC–DC converter with reduced reverse-recovery current and switch-voltage stress,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 272-280, Feb. 2005.
[28] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. IEEE IECON, pp. 567-572, 2005.
[29] T. Dumrongkittigule, V. Tarateeraseth, and W. Khan-ngern, “A new integrated inductor balanced switching technique for common mode EMI reduction in high step-up DC/DC converter,” in Proc. International Zurich Symposium on Electromagnetic Compatibility, pp. 541-544, 2006.
[30] Y. J. A. Alcazar, R. T. Bascope, D. S. de Oliveira, E. H. P. Andrade, and W. G. Cardenas, “High voltage gain boost converter based on three-state switching cell and voltage multipliers,” in Proc. IEEE IECON, pp. 2346-2352, 2008.
[31] G. V. T. Bascope, R. P. T. Bascope, D. S. Oliveira Jr., S. A. Vasconcelos, F. L. M. Antunes, and C. G. C. Branco, “A high step-up DC-DC converter based on three-state switching cell,” in Proc. IEEE ISIE, pp. 998-1003, 2006.
[32] S. K. Changchien, T. J. Liang, J. F. Chen, L. S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007-2017, 2010.
[33] S. K. Changchien, T. J. Liang, J. F. Chen, L. S. Yang, “Step-up DC-DC converter by coupled inductor and voltage-lift techbique,” IET Power Electron, vol. 3, no. 3, pp. 369-378, 2010.
[34] W. B. Bao and J. Y.Bao, “Modeling and simulation of multilevel current source inverter based on SIMetrix/SIMPLIS,” in Proc. IEEE ICCASM, 2010, pp. v4-466-v4-470
[35] L. S. Yang, T. J. Liang, H. C. Lee and J. F. Chen, “Novel high step-up DC-DC converter with coupled-inductor and voltage-doubler circuits,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4196-4206, Sep. 2011.
[36] Y. Zhao, W. Li, Y. Deng, and X. He, “High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications,” IET Power Electron, vol. 4, no. 8, pp. 851-859, 2011.
[37] W. Li, Y. Zhao, Y. Deng, and X. He, “Interleaved converter with voltage multiplier cell for high step-up and high-efficiency conversion,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2397-2408, Sep. 2010.
[38] J. Y. Zhu and D. H. Ding, “Zero-Voltage- and Zero-Current-Switched PWM DC–DC Converters Using Active Snubber,” IEEE Trans. Industry Applications, vol. 35, no. 6, pp. 1406-1412, Nov/Dec. 1999.
校內:2020-01-24公開