簡易檢索 / 詳目顯示

研究生: 陳柏瑞
Chen, Po-Jui
論文名稱: 基於雙向控制與動態制動應用於室內自行車數位訓練平台
Application of Bilateral Control and Dynamic Braking in Indoor Bicycle Digital Training Platform
指導教授: 蔡明祺
Tsai, Mi-Ching
共同指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 122
中文關鍵詞: 力感回饋雙向控制動態制動人機互動
外文關鍵詞: Bilateral Control, Impedance Control, Dynamic Braking, Human-Machine Interaction
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 疫情期間隨著居家健身概念的提升,許多專為居家使用的健身器材被開發及販售,例如:智慧瑜珈墊、健身環、自行車訓練平台等等,其中被動式的自行車訓練平台因其結構、阻力產生方式有許多缺點,因此基於馬達控制的電機式自行車訓練平台備受矚目,隨後解決了許多被動式的缺點。本論文以力感回饋與阻抗控制為基礎,使用雙向控制架構於自行車訓練平台,並根據雙向控制架構來設計主端(Master)、從端(Slave),主端(Master)視為實際物理系統(Real System)、從端(Slave)為虛擬系統(Virtual System),設計自行車體模型與負載模型於虛擬系統並改變虛擬端阻抗,藉由補償器補償於實際端之特性,使得實際端能跟隨虛擬端的阻抗,最終呈現相對應的力感回饋與轉速響應給使用者,實現基於雙向控制架構的虛實整合、人機互動、數位健身房的概念。根據外部踩踏行為會使馬達呈現電動機模式(Motor Mode)以及發電機模式(Generator Mode)。電動機模式時能量從電源端流向馬達,發電機模式時會有反電動勢的產生,能量從馬達流向電源端,本論文加入動態制動(Dynamic Braking)技術來消耗因踩踏行為所產生的反電動勢,確保DC Bus端電壓的工作區間和制動轉矩的產生。

    This research proposes a mechanical impedance control method utilizing a bilateral control structure, applied to indoor bicycle training platform. A virtual bicycle model and an environmental load model are developed within the bilateral control structure's virtual system. This configuration enables the simulation of various mechanical impedance levels, allowing users to experience the impedance of cycling in diverse outdoor environments. During the experiments, the motor operates in both motor mode and generator mode. In generator mode, a dynamic braking technique is employed to manage the motor's back-EMF, ensuring the DC-bus voltage remains within operational limits while delivering the required braking torque.

    中文摘要 I Abstract II 誌謝 XVI 表目錄 XX 圖目錄 XXI 符號表 XXVI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 文獻回顧 8 1.3.1 阻抗控制 8 1.3.2 雙向控制 10 1.3.3 電機制動技術 13 1.3.4 自行車輔助扭矩策略 16 1.4 論文章節概要 21 第二章 雙向控制架構特性分析與說明 23 2.1 雙向控制架構說明 23 2.2 轉速-轉矩同動之雙向控制架構 25 2.3 雙向控制架構之補償器特性分析 33 2.3.1 補償器補償於虛擬端分析 33 2.3.2 補償器補償於實際端分析 39 第三章 整體架構分析與情境說明 43 3.1 實際端(主端)模型建立 44 3.2 虛擬端(從端)模型建立 46 3.3 整體架構 48 3.4 三種模式說明與情境模擬 50 3.4.1 平地模式說明與模擬 56 3.4.2 上坡模式說明與模擬 58 3.4.3 下坡模式說明與模擬 60 第四章 電動機模式、發電機模式分析與運作 63 4.1 電動機模式 63 4.2 發電機模式 63 4.3 動態制動原理說明 64 4.4 動態制動電路設計 66 第五章 實作平台建立與實驗結果 70 5.1 馬達規格 70 5.2 硬體規格 71 5.3 韌體環境 73 5.4 實作平台建立 76 5.5 實驗結果 77 5.5.1 平地模式-阻抗實驗 78 5.5.2 上坡模式-阻抗實驗 81 5.5.3 下坡模式-滑行實驗 83 5.5.4 電動機模式與發電機模式 84 第六章 結論與未來建議 85 6.1 結論 85 6.2 未來建議 85 參考文獻 87

    [1]國民體育季刊-211期,運動x科技-工研院產科國際所。
    [2]Market.us, “Bicycle Market By Type , By Technology , By End-User, By Region and Companies - Industry Segment Outlook, Market Assessment, Competition Scenario, Trends and Forecast 2024-2033,”Available from: https://market.us/report/bicycle-market/ 檢索日期: 2024/10/20
    [3]台灣Giant,「訓練台」,Available from: https://www.giant-bicycles.com/tw/trainers 檢索日期: 2024/10/20
    [4]Zwift, “The Indoor Cycling App for Smart Trainers & Bikes,” Available from: Zwift | The Indoor Cycling App for Smart Trainers & Bikes 檢索日期: 2024/10/20
    [5]台灣Garmin,「室內用運動解決方案 Tacx NEO 2T 訓練台」,Available from:https://www.garmin.com.tw/products/intosports/tacx-neo-2t-smart-trainer/ 檢索日期: 2024/10/20
    [6]N.Hogan, “Impedance Control: An Approach to Manipulation. Part I – Theory,” Transaction of ASME, Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-7, March 1985.
    [7]N.Hogan, “Impedance Control: An Approach to Manipulation. Part II-Implementation,” Transaction of ASME, Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 8-16, March 1985.
    [8]N.Hogan, “Impedance Control: An Approach to Manipulation. Part III -Applications,” Transaction of ASME, Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 16-23, March 1985.
    [9]S.Haddadin, A.Albu-Schäffe, and G .Hirzinger, “Requirements for Safe Robots: Measurements, Analysis and New Insights,” The International Journal of Robotics Research, vol. 28, pp. 1507-1527, August 2009.
    [10]江宗祐,「永磁同步電機雙模式切換控制應用騎乘訓練平台」,國立成功大學電機工程學系碩士論文,2020。
    [11]K. Ogawa and K. Ohnishi, “Development of a Haptic Palpation Device with a Scaling Bilateral Control for the Notes Surgery,” IEEE International Conference on Mechatronics, pp. 93-98, 2017.
    [12]T.K. Tu, I.H. Tsai, J.Y. Yen, T.C. Tsao, and M.C. Tsai, “Improved Haptic Transparency of Bilateral Control Using Torque-Measured Magnetic Coupling,” Machines, vol. 9, no. 8, pp. 172-173, 2021.
    [13]陳嘉宏,「雙向控制設計於人機系統運動行為之教導應用」,國立成功大學機械工程學系碩士論文,2022。
    [14]鄒崴丞,「具多維度之觸覺回饋雙向控制應用於遠端人機協作系統與運動複製」,國立成功大學機械工程學系碩士論文,2023。
    [15]吳權倫,「伺服模墊系統之雙向控制應用」,國立成功大學電機設計與驅動產業碩士專班碩士論文,2021。
    [16]何宇浩,「雙向控制應用於環境自適應之動力輔助推車」,國立成功大學電機設計與驅動產業碩士專班碩士論文,2024。
    [17]李松育,「觸覺回饋雙向控制於虛擬實境之實現」,國立成功大學機械工程學系碩士論文,2019。
    [18]C. Gökçe, Ö. Üstün and A.Y. Yeksan, “Dynamics and Limits of Electrical Braking,” 8th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, pp. 268-272, 2013.
    [19]Z. Kangkang, L. Jianqiu, O. Minggao, G. Jing, and M. Yan, “Electric Braking Performance Analysis of PMSM for Electric Vehicle Applications,” Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, pp. 2596-2599, 2011.
    [20]許敏澤,「考量舒適性之電動機車動力馬達再生制動方法研製」,國立成功大學電機工程學系碩士論文,2018。
    [21]J. Gu, M. Ouyang, J. Li, D. Lu, C. Fang, and Y. Ma, “Driving and Braking Control of PM Synchronous Motor Based on Low-Resolution Hall Sensor for Battery Electric Vehicle,” Chinese Journal of Mechanical Engineering, vol. 26, pp. 1-10 January 2013.
    [22]S.T. Ko, S.S. Park, and J.H. Lee, “Regenerative Battery Charging Control Method for PMSM Drive without a DC/DC Converter,” Electronics, vol. 8, art. no. 1126, 2019
    [23]J. Zhao, “Research and Implement of PMSM Regenerative Braking Control for Electric Vehicle,” Master’s thesis, University of Wollongong, 2017.
    [24]陳冠昕,「電助自行車之輔助扭矩控制策略研究」,國立成功大學機械工程學系碩士論文,2017。
    [25]G. Thejasree and R. Maniyeri, “E-bike System Modeling and Simulation,” IEEE International Conference on Intelligent Systems and Green Technology, pp. 9-95, 2019.
    [26]P.J. Ho, W.D. Chung, S.C. Yang, C.P Yi, P.H. Chou, Y.J. Lin, B.H. Sie, and S.C. Yang, “Motor Torque Control of Electric Assist Bike Considering External Resistances,” Conference of the IEEE Industrial Electronics Society, pp. 1-7, 2023。
    [27]G. Farreny, “Modeling and Simulation of the Transmission System for a Chainless Electric Bicycle,” Bachelor’s thesis, Universitat Politècnica de Catalunya Barcelona Tech – UPC, 2015.
    [28]M.M. Shoman and H. Imine, “Bicycle Simulator Improvement and Validation,” IEEE Access, vol. 9, pp. 55063-55076, 2021.
    [29] P.J. Ho, C.P. Yi, Y.J. Lin, W.D. Chung, P.H. Chou, and S.C. Yang, “Torque Measurement and Control for Electric-Assisted Bike Considering Different External Load Condition,” Sensors, vol. 23, art. no. 4657, 2023.
    [30]V. Ferrer-Roca, V.Rivero-Palomo, A. Ogueta-Alday, J.A. Rodríguez-Marroyo, and J. García-López, “Acute Effects of Small Changes in Crank Length on Gross Efficiency and Pedalling Technique During Submaximal Cycling,” Journal of Sport Sciences, vol. 35, art. no. 14, pp. 1328-1335, 2017.
    [31]J.S. Lee and J.W. Jiang, “Design and Simulation of Control Systems for Electric-Assist Bikes,” Master’s thesis, National Taipei University Department of Electrical Engineering, 2016.
    [32]J.T. Parks, “Simulation of Riding A Bicycle Using Simulink,” Master’s thesis, California State University Department of Mechanical Engineering, 2010.
    [33]B. Blocken, T.V. Druenen, Y. Toparlar, and T. Andrianne, “CFD Analysis of an Exceptional Cyclist Sprint Position,” Sports Eng, vol. 22, art. no. 10, 2019. Available from: https://doi.org/10.1007/s12283-019-0304-7, 檢索日期: 2024/10/20
    [34]劉子瑜,「基於弦波電流驅動於永磁同步馬達電流迴路控制之研究」,國立成功大學電機工程學系碩士論文,2009。
    [35]台灣單車百岳,「GPX圖像路線」,Available from:https://bike100.tw/ 檢索日期: 2024/10/20
    [36]Methode Electronics, “Data Sheet - Standard Bottom Bracket Torque and Speed Sensor,” March 2016
    [37]Texas Instruments, “InstaSPIN Projects and Labs Users Guide InstaSPIN-FOC and InstaSPIN-MOTION,” Version 1.0.14
    [38]陳俊麒,「基於外擾轉矩估測之整合式速度與轉矩控制於復健踩車系統之應用」,國立成功大學機械工程學系碩士論文,2023。
    [39]C.L. Lin, E.P. Chen, Y.C. Chen, and M.K. Liu, “Advanced Driving/Braking Control Design for Electric Bikes,” 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1254-1259, 2017.
    [40]R.R. Bini, P.H. James, L. Croft, and A. Kilding, “Pedal Force Effectiveness in Cycling: A Review of Constraints and Training Effects,” Journal of Science and Cycling, vol. 2, pp. 11-24, 2013.

    無法下載圖示 校內:2030-01-16公開
    校外:2030-01-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE