| 研究生: |
朱顗中 Chu, Kai-Chung |
|---|---|
| 論文名稱: |
含再生能源之微電網分散式電源控制方法 A Novel Control Scheme of DERs Considering Generations of Renewable Energy in a Microgrid |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 分散式再生能源 、分散式電源 、微電網控制 、孤島運轉 、電壓型變流器 、孤島偵測 |
| 外文關鍵詞: | Distributed energy resources (DERs), Microgrid control, Islanded operation, Voltage-source inverter (VSI), Islanding detection |
| 相關次數: | 點閱:152 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對以變流器為基礎之分散式電源提出了一套控制策略與方法,使由其所組成之微電網能夠提供高品質的不斷電供電服務。本文所提出之控制方法能夠分別使微電網獨立地運轉在市電併聯與孤島運轉模式。同時,在兩種運轉模式的轉換過程中,區域負載能夠擁有高電力品質的模式轉換。另外,考慮以再生能源作為微電網內之分散式電源,在孤島運轉時,當因環境或負載切換等因素而導致輸入電源不足供應區域負載時,本文提出了功率補償的控制方法。藉由本文所提之功率補償方法,當某一台分散式再生能源不足供應區域負載時,不足額的功率能夠自其他分散式電源尋求補償以穩定整體之微電網系統。此外,本文提出了新式主動式孤島偵測方法以符合本文微電網之運轉操作。最後,本文分別以模擬及硬體電路實作的方式來驗證所提出之控制策略與微電網系統的可行性及有效性。
This thesis presents a novel control scheme of inverter used by distributed energy resources (DERs) systems for the microgrid to provide services with uninterrupted high-quality power supply. The proposed control scheme can be operated in both grid-connected and islanding modes. Also, it provides the ride through capability to microgrid local load without power interrupted during the transition between two modes. Additionally, taking renewable energy source as the distributed generation (DG) sources, the power unbalance between the maximum power point (MPP) of energy sources and loads is considered in this thesis. A new active islanding detection method is also proposed to consider the extreme conditions of the operation in the microgrid. Based on a down-scaled test system of the microgrid with multi-inverters, simulation and experimental results are provided to verify the feasibility and effectiveness of the proposed control scheme.
[1] http://www.energy.gov/recovery/, U.S. Department of Energy.
[2] "Grid of the future," IEEE power & energy magazine, 2009.
[3] J. A. Peças Lopes, C. L. Moreira, and A. G. Madureira, “Defining control strategies for microgrids islanded operation,” IEEE Transaction on Power System, vol. 21, no. 2, pp. 916–924, May 2006.
[4] K. Benjamin, B. Thomas, and D. Richard, “Microgrid standards and technologies,” IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Jul. 2008.
[5] R. Lasseter et al., White Paper on Integration of Distributed Energy Resources—The CERTS MicroGrid Concept, California Energy Commission, Oct. 2003.
[6] J. M. Guerrero, J. Matas, L. García de Vicuña, M. Castilla, and J. Miret, “Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,” IEEE Transaction on Industrial Electronics, vol. 54, no. 2, pp. 994–1004, Apr. 2007.
[7] M. C. Chandorkar and D. M. Divan, “Control of parallel connected inverters in standalone AC supply system,” IEEE Transaction on Industrial Applications, vol. 29, no. 1, pp. 136–143, Jan./Feb. 1993.
[8] J. C. Vasquez, J. M. Guerrero, A. Luna, P. Rodríguez, and R. Teodorescu, “Adaptive Droop Control Applied to Voltage-Source Inverters Operating in Grid-Connected and Islanded Modes,” IEEE Transaction on Industrial Electronics, vol. 56, no. 10, pp. 4088 – 4096, Oct. 2009.
[9] R. A. Mastromauro, M. Liserre, T. Kerekes and A. D. Aquila, “A single-phase voltage-controlled grid-connected photovoltaic system with power quality conditioner functionality,” IEEE Transaction on Industrial Electronics, vol. 56, no. 11, pp. 4436 – 4444, Nov. 2009.
[10] H. Kim, T. Yu, and S. Choi, “Indirect Current Control Algorithm for Utility Interactive Inverters in Distributed Generation Systems,” IEEE Transaction on Power Electronics, vol. 23, no. 3, pp. 1342 – 1347, May 2008.
[11] J. C. Vasquez, R. A. Mastromauro, J. M. Guerrero, and M. Liserre, “Voltage Support Provided by a Droop-Controlled Multifunctional Inverter,” IEEE Transaction on Industrial Electronics, vol. 56, no. 11, pp. 4510 – 4519, Nov. 2009.
[12] T. F. Wu, Y. E. Wu, H. M. Hsieh, and Y. K. Chen, “Current Weighting Distribution Control Strategy for Multi-Inverter Systems to Achieve Current Sharing,” IEEE Transaction on Power Electronics, vol. 22, no. 1, pp.160 – 168, Jan. 2007.
[13] A. Tuladhar, H. Jin, T. Unger, and K. Mauch, “Parallel operation of single phase inverter,” in Proc. IEEE Appl. Power Electron. Conf., 1997, pp. 94–100.
[14] J. F. Chen and C. L. Chu, “Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation,” IEEE Transaction on Power Electronics, vol. 10, no. 5, pp. 547–558, Sep. 1995.
[15] K. Siri, C. Q. Lee and T. F. Wu, “Current distribution control schemes for parallel connected converter modules part II: central-limit control,” IEEE Transaction on Aerospace and Electronics System, vol. 28, pp. 841–851, Jul. 1992.
[16] J. M. Guerrero, L. G. Vicuña, J. Matas, M. Castilla, and J. Miret, “ Output Impedance Design of Parallel-Connected UPS Inverters With Wireless Load-Sharing Control,” IEEE Transaction on Industrial Electronics, vol. 52, no. 4, pp. 1126 – 1135, Aug. 2005.
[17] Y. Li, D. M. Vilathgamuwa, and P. C. Loh, “Design, analysis, and real-time testing of a controller for multibus microgrid system,” IEEE Transaction on Power Electronics, vol. 19, no. 5, pp. 1195 – 1204, Sep. 2004.
[18] C. M. Affonso, W. Freitas, W. Xu, and L. C. P. da Silva , “Performance of ROCOF relays for embedded generation applications,” Proc. Inst. Electr. Eng. Generation, Transm. Distribution, vol. 152, no. 1, pp. 109–114, 2005.
[19] Y. Jung , J. Choi, B. Yu, J. So, and G. Yu, “A novel active frequency drift method of islanding prevention for the grid-connected photovoltaic inverter,” in Proc. Power Electron. Spec. Conf., 2005, pp. 1915–1921.
[20] Y. S. Jung, J. H. Choi, and G. J. Yoo, “A novel active anti-islanding method for grid-connected photovoltaic inverters,” J. Power Electron., vol. 7, no. 1, pp. 64–71, Jan. 2007.
[21] S.-K. Kim, J.-H. Jeon, J.-B. Ahn, B. Lee and S.-H. Kwon, “Frequency-Shift Acceleration Control for Anti-Islanding of a Distributed-Generation Inverter,” IEEE Transaction on Industrial Electronics, vol. 57, no. 2, pp. 494 -504, Feb. 2010.
[22] H.-L. Jou, W.-J. Chiang and J.-C. Wu, “A Simplified Control Method for the Grid-Connected Inverter With the Function of Islanding Detection,” IEEE Transaction on Power Electronics, vol. 23, no. 6, pp. 2775– 2783, Nov. 2008.
[23] 德州儀器公司,http://www.ti.com.tw/。
[24] P. Sanchis, A. Ursaea, E. Gubia, and L. Marroyo, “Boost DC-AC inverter: a new control strategy,” IEEE Transaction on Power Electronics, vol. 20, no. 2, pp. 343-353, March 2005.
[25] N. Mohan, T. M. Undeland and W. P. Robbins, “Power electronics: converters, applications, and design, 3rd ed.,” John Wiley & Sons Inc, 2009.
[26] H. Saadat, Power system analysis. Boston: WCB/McGraw-Hill, c1999.
[27] A. Roshan, R. Burgos, A. C. Baisden, F. Wang and D. Boroyevich, “ A D-Q Frame Controller for a Full-Bridge Single Phase Inverter Used in Small Distributed Power Generation Systems,” in Proc. 2007 IEEE The Applied Power Electronics Conf., pp. 641 – 647.
[28] D. Dong, T. Thacker, R. Burgos, D. Boroyevich, F. Wang, “On Zero Steady-State Error of Single-Phase PWM Inverters Voltage Control and Phase-Locked Loop System,” in Proc. 2009 IEEE The Energy Conversion Congress and Exposition, pp. 892 – 899.
[29] R. Zhang, M. Cardinal, P. Szczesny, M. Dame, “A grid simulator with control of single-phase power converters in D-Q rotating frame,” in Proc. 2002 IEEE Power Electronics Specialist Conf., pp.1431-1436.
[30] X. Q. Guo, Q. L. Zhao, W. Y. Wu, “A Single-Phase Grid-Connected Inverter System with Zero Steady-State Error,” in Proc. 2006 IEEE International Power Electronics and Motion Control Conf., pp. 1-5.
[31] 台灣安捷倫科技股份有限公司,http://www.agilent.com.tw/。
[32] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services,” IEEE Transaction on Smart Grid, vol. 1, no. 2, pp. 134-143, Sep. 2010.
[33] IEEE Recommended Practice for Utility Interface of Distributed (PV) Systems, IEEE Std. 929–2000.