簡易檢索 / 詳目顯示

研究生: 吳立凡
Wu, Li-Fan
論文名稱: 模糊動態步態產生器於中型人形機器人即時防撞控制之設計與實現
Design and Implementation of Fuzzy Dynamic Gait Pattern Generation for Real-Time Push Recovery Control of Teen-Sized Humanoid Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 96
中文關鍵詞: 質量中心動態步態平衡人形機器人零力矩點回授
外文關鍵詞: Center of Mass, Dynamic Gait Balance, Humanoid Robot, Zero Moment Point Feedback Control
相關次數: 點閱:158下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用安裝在機器人雙足上壓力感測器,量測步行時零力矩點變化,規劃動態閾值,並結合虛擬力線性倒單擺模型,使重心軌跡可順應外力變化,讓機器人受到外力衝擊時,即時產生合適的步態。控制過程中可傾斜身體、壓低重心以及調整步距等參數以維持平衡。一般雙足機器人是透過理想的零力矩點,規劃重心的移動軌跡,並以漸開線(或擺線)的方式計算踏腳點,以離線的方式產生步態。因此當機器人受到未知的外力衝擊時,持續固定的重心移動將導致機器人傾倒。為了即時偵測機器人的平衡狀況,本論文設計並研製新一代的腳底板,每個腳底板上安裝了四個高精準度的荷重元壓力感測器,透過放大器與濾波器,量測零力矩點實際與理想數值的誤差與誤差變化量,使機器人可在單腳支撐期瞬間切換步態,同時計算下一個步態。除此之外,本論文更整合加速度計與模糊控制器,提出模糊動態步態產生器,讓機器人能夠透過零力矩點回授,即時產生合適步態削弱外力撞擊。最後,實驗結果顯示,透過本論文所提方法,能讓機器人在踏步時,受到外力衝擊的位能變化量達2.37焦耳,相較原地站姿更提升約1.3倍。

    Fuzzy dynamic gait pattern generator, which allows the teen-sized humanoid robot to real-time generate a suitable gait pattern when it is hit by an unexpected force, is proposed in this thesis. Conventional gait pattern generators usually utilize the ideal Zero Moment Point (ZMP) to plan the trajectory of the Center of Mass (CoM) along with the cycloid to generate footsteps. However, the prior planned gait pattern cannot deal with unexpected situations, especially when the robot suffers an unknown force. Therefore, we propose a dynamic gait pattern generator that leverages virtual force Linear Inverted Pendulum Model (LIPM) to adjust the trajectory of the CoM and detects the balance status by estimating the trajectories of ZMP through eight high-precision load cell pressure sensors mounted on the robot’s soles. Besides, we integrate an accelerometer with the pressure sensors by the fuzzy controller to immediately generate a suitable gait pattern. When the robot is pushed suddenly, it adapts a pre-planned gait pattern to replace the current gait. At the same time, the fuzzy controller calculates next gaits with appropriate strides and lean angle to absorb the impact. All the experimental results demonstrate that the humanoid robot, David Junior II, can endure a hit with the potential energy of 2.3721 J during walking, which is 1.3 times more robust than the status of standing.

    Abstract Ⅰ Acknowledge Contents Ⅲ Contents Ⅳ List of Figures Ⅶ List of Tables XI Chapter 1 Introduction 1.1 Motivation 1 1.2 Related Works 2 1.3 Thesis Organization 5 Chapter 2 Improved Foot Structure with Pressure Sensors 2.1 Introduction 7 2.2 Hardware Specifications and Sensor of David Junior II 8 2.2.1 The Configuration of Robot 9 2.2.2 9-axis IMU 13 2.2.3 Force Sensing Resistor 14 2.2.4 Load Cell 15 2.3 The Configuration of Improved Robot Foot Structure Design 17 2.3.1 Mechanism 1: the Design of Spring (Prototype 1) 17 2.3.2 Mechanism 2: Flexiforce A201 (Prototype 2) 19 2.3.3 Mechanism 3: Load Cell (Prototype 3) 20 2.3.4 Mechanism 4: Metal Version (Prototype 4) 21 2.4 Control System 22 2.4.1 Circuit Board 23 2.4.2 USB2Dynamixel 25 2.4.3 Computer 26 2.4.4 Graphical User Interface 28 2.5 Summary 29 Chapter 3 Dynamic Virtual Force LIPM 3.1 Introduction 30 3.2 Linear Inverted Pendulum Model 31 3.2.1 Conventional LIPM 31 3.2.2 Double-Link LIPM 35 3.3 Dynamic Virtual Force LIPM 35 3.3.1 Dynamic ZMP Threshold 40 3.3.2 Virtual Force Estimation 42 3.3.3 Variable height of CoM 44 3.4 Summary 46 Chapter 4 Dynamic Gait Pattern Generation with Fuzzy Control 4.1 Introduction 47 4.2 Dynamic Gait Pattern Generation Strategy 49 4.2.1 Real-time Gait Adoption 50 4.2.2 Real-time Variation of CoM, Stride and Lean Angle 52 4.3 Introduction of Inverse Kinematics 53 4.3.1 Forward Kinematics 54 4.3.2 Inverse Kinematics 56 4.4 Fuzzy Based Multisensory Gait Pattern Generation 58 4.4.1 Integration of IMU and Pressure Sensor 60 4.4.2 Input of Fuzzy System 61 4.4.2.1 ZMP Error and ZMP Error Differential 64 4.4.2.2 ZMP Error and Acceleration 65 4.5 Summary 66 Chapter 5 Experimental Results 5.1 Introduction 67 5.2 Parameter Setting of Virtual Force LIPM and Gait Pattern 68 5.3 Experiment I: Sensitivity Test 69 5.4 Experiment II: Obstacle Test 73 5.5 Experiment III: Static Push Recovery 77 5.6 Experiment IV: Control Stride of Dynamic Walking 81 5.7 Experiment V: Control Lean Angle of Dynamic Walking 84 5.8 Summary 87 Chapter 6 Conclusion and Future Works 6.1 Conclusion 89 6.2 Future Works 90 References 92

    [1] Pepper, [Online] Available:
    https://www.ald.softbankrobotics.com/en/cool-robots/pepper
    [2] DARwIn-OP, [Online] Available:
    http://support.robotis.com/en/product/darwin-op.htm
    [3] Robi, [Online] Available: http://www.hellorobi.co.uk/
    [4] Atlas, [Online] Available: https://www.bostondynamics.com/atlas
    [5] HRP, [Online] Available: http://www.drc-hubo.com/
    [6] DRC-HUBO, [Online] Available: http://www.hellorobi.co.uk/
    [7] T. Sato, S. Sakaino, E. Ohashi, and K. Ohnishi, “Walking Trajectory Planning on Stairs Using Virtual Slope for Biped Robots,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1385-1396, 2011.
    [8] M. Shimojo, T. Araki, A. Ming, and M. Ishikawa, “A ZMP Sensor for a Biped Robot,” in Proceedings of 2006 IEEE International Conference on Robotics and Automation, Tokyo, Japan, May 2006, pp. 1200-1205.
    [9] H. Shin and B. Kim, “Energy-Efficient Gait Planning and Control for Biped Robots Utilizing the Allowable ZMP Region,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 986-993, 2014.
    [10] M. Crisóstomo, A. P. Coimbra and J. Ferreira, “ZMP Trajectory Reference for the Sagittal Plane Control of a Biped Robot Based on a Human CoP and Gait,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA ,Oct. 2009, pp. 1588-1593.
    [11] P. Sardain and G. Bessonnet, “Zero Moment Point—Measurements From a Human Walker Wearing Robot Feet as Shoes,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 34, no. 5, pp. 638-648, 2004.
    [12] P. Sardain and G. Bessonnet, “Forces Acting on a Biped Robot. Center of Pressure—Zero Moment Point,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 34, no. 5, pp. 630-637, 2004.
    [13] L. Humphrey, H. Hemami, K. Barin, and A. Krishnamurthy, “Simulated Responses to Support Surface Disturbances in a Humanoid Biped Model With a Vestibular-Like Apparatus,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 40, no. 1, pp. 109-119, 2010.
    [14] K. Hwang, J. Lin and K. Yeh, “Learning to Adjust and Refine Gait Patterns for a Biped Robot,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 12, pp. 1481-1490, 2015.
    [15] M. Claros, J. J. Rodriguez and R. Soto, “Balance Control of a Biped Robot in the Coronal Plane Using Foot Sole CoP Trajectories,” in Proceedings of IEEE International Conference on Control and Automation, Taichung, Taiwan, June 2014, pp. 661-666.
    [16] Central Pattern Generators and the Control of Rhythmic Movements, [Online] Available: https://www.ncbi.nlm.nih.gov/pubmed/11728329
    [17] J. Or, “A hybrid CPG–ZMP Control System for Stable Walking of a Simulated Flexible Spine Humanoid Robot,” Neural Networks, vol. 23, no. 3, pp. 452-460, 2010.
    [18] A. Ijspeert, “Central Pattern Generators for Locomotion Control in Animals and Robots: A review,” Neural Networks, vol. 21, no. 4, pp. 642-653, 2008.
    [19] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Hawaii, USA, Oct. 2001, pp. 239-246.
    [20] Y. Hong, B. Lee, and J. Kim, “Command State-Based Modifiable Walking Pattern Generation on an Inclined Plane in Pitch and Roll Directions for Humanoid Robots,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 4, pp. 783-789, 2011.
    [21] G. Yu, Y. Liu and X. Li, “Humanoid Robot Gait Planning based on 3D Linear Inverted Pendulum Model,” Journal of Computer Applications, vol. 32, no. 9, pp. 2643-2647, 2013.
    [22] T. Komura, A. Nagano, H. Leung, and Y. Shinagawa, “Simulating Pathological Gait Using the Enhanced Linear Inverted Pendulum Model,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 9, pp. 1502-1513, 2005.
    [23] Y. Hong and J. Kim, “3-D Command State-Based Modifiable Bipedal Walking on Uneven Terrain,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 657-663, 2013.
    [24] E. Ohashi, T. Aiko, T. Tsuji, H. Nishi, and K. Ohnishi, “Collision Avoidance Method of Humanoid Robot with Arm Force,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1632-1641, 2007.
    [25] M. Missura and S. Behnke, “Gradient-driven Online Learning of Bipedal Push Recovery,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, Sept. 2015, pp. 387-392.
    [26] V. Semwal, S. Katiyar, R. Chakraborty and G. Nandi, “Biologically-inspired Push Recovery Capable Bipedal Locomotion Modeling through Hybrid Automata,” Robotics and Autonomous Systems, vol. 70, pp. 181-190, 2015.
    [27] K. Harada, S. Hattori, H. Hirukawa, M. Morisawa, S. Kajita and E. Yoshida, “Two-Stage Time-Parametrized Gait Planning for Humanoid Robots,” IEEE/ASME Transactions on Mechatronics, vol. 15, no. 5, pp. 694-703, 2010.
    [28] J. Lin, J. Chang, S. M. Lyu, S. W. Wang and Y. W. Lin, “Locomotion Control of a Biped Robot for Stair-climbing by Fuzzy Stabilization Tuning Approach,” in Proceedings of IEEE International Conference on Control Applications, Yokohama, Japan, Sept. 2010, pp. 1590-1595.
    [29] T.-H. S. Li, Y.-T Su, S.-H Liu, J.-J Hu, and C.-C Chen, “Dynamic Balance Control for Biped Robot Walking Using Sensor Fusion, Kalman Filter, and Fuzzy Logic,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4394-4408, 2012.
    [30] M. Talebi and M. Farrokhi, “Adaptive Fuzzy-PD Controller for 3D Walking of Biped Robots,” in Proceedings of IEEE Conference of AI and Robotics, Qazvin, Iran, April 2015, pp. 1-7.
    [31] T.-H. S. Li, Y.-T Su, S.-W. Lai, and J.-J. Hu, “Walking Motion Generation, Synthesis, and Control for Biped Robot by Using PGRL, LPI, and Fuzzy Logic,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 3, pp. 736-748, 2011.
    [32] S. L. Cardenas-Maciel, O. Castillo, L. T. Aguilar, and J. R. Castro, “A TS Fuzzy Logic Controller for Biped Robot Walking Based on Adaptive Network Fuzzy Inference System,” in Proceedings of International Joint Conference on Neural Networks, Barcelona, Spain, July 2010, pp. 1-8.
    [33] H.-W. Lee and C.-L. Hwang, “Design by Applying Fuzzy Control Technology to Achieve Biped Robots with Fast and Stable Footstep,” in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Seoul, South Korea, Oct. 2012, pp. 1575-1580.
    [34] C.-L. Hsu, “Design and Implementation of SOPC Based Dynamic Balance Control for Small Size Humanoid Robot,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2007.
    [35] B.-J. Lee, D. Stonier, Y.-D. Kim, J.-K. Yoo, and J.-H. Kim, “Modifiable Walking Pattern of a Humanoid Robot by Using Allowable ZMP Variation,” IEEE Transactions on Robotics, vol. 24, no. 4, pp. 917-925, 2008.
    [36] T.-H S. Li, Y.-F. Ho, P.-H. Kuo, Y.-T. Ye, and L.-F Wu, “Natural Walking Reference Generation Based on Double-Link LIPM Gait Planning Algorithm,” IEEE Access, vol. 5, pp. 2459-2469, 2017.
    [37] RoboCup 2017 Soccer Humanoid League Laws of the Game, [Online] Available:
    http://www.robocuphumanoid.org/wp-content/uploads/RCHL-2017-final-1.pdf
    [38] STM32-F103ZET6, [Online] Available:
    http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1031
    [39] x-IMU, [Online] Available: http://www.x-io.co.uk/products/x-imu/
    [40] FlexiForce A201-25, [Online] Available:
    https://www.tekscan.com/products-solutions/force-sensors/a201
    [41] A201-25 pressure sensor, [Online] Available:
    https://kamami.pl/czujniki-nacisku/198866-rezystancyjny-czujnik-sily-flexiforce-a201-1lb-045-kg.html
    [42] Load Cell, [Online] Available:
    http://www.playrobot.com/load/723-load-cell-10kg-straight-bar-tal220.html
    [43] HX711, [Online] Available:
    https://learn.sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookup-guide
    [44] Arduino Mega 2560, [Online] Available: https://www.arduino.cc/en/main/arduinoBoardMega2560
    [45] ZIG-100, [Online] Available:
    http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
    [46] ZigBee module, [Online] Available: http://developers-club.com/posts/223395/
    [47] USB2Dynamixel, [Online] Available: http://wiki.cybedroid.com/index.php?title=USB2Dynamixel
    [48] PICO 880GA-I7-4650U, [Online] Available:
    http://www.axiomtek.com.tw/Default.aspx?MenuId=Products&FunctionId=ProductView&ItemId=8135&upcat=137
    [49] Y. Choi, B. J. You, and S. R. Oh, “On the Stability of Indirect ZMP Controller for Biped Robot Systems,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Sendai, Japan, Sept. 2004, pp. 1966-1971.
    [50] W.-C. Chen, “Kicking Balance Control of Humanoid Robot and Its Application to Multi-goal Game,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2016.
    [51] Y.-T. Ye, “Design and Implementation of Gait Pattern Generation by Improved Linear Inverted Pendulum Model for Teen-Sized Humanoid Robot,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2015.
    [52] M. Vukobratovic, B. Brovac, D. Surla, and D.Stokic, Biped Locomotion: dynamics, stability, control and application, Springer-Verlag, Berlin Germany, 1990.
    [53] M. H. P. Dekker, Zero-Moment Point Method for Stable Biped Walking, Eindhoven University of Technology, Jul. 2009.
    [54] J. Ferreira, M. Crisostomo, A. Coimbra, and B. Ribeiro, “Control of a Biped Robot with Support Vector Regression in Sagittal Plane,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 3167-3176, 2009.
    [55] D. Braun, J. Mitchell, and M. Goldfarb, “Actuated Dynamic Walking in a Seven-Link Biped Robot,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 1, pp. 147-156, 2012.
    [56] K. Harada, K. Miura, M. Morisawa, K. Kaneko, S. Nakaoka, F. Kanehiro, T. Tsuji, and S. Kajita, “Toward Human-like Walking Pattern Generator,” in Proceedings of IEEE/RSJ International Conference of Intelligent Robots System, St. Louis, USA, Oct. 2009, pp. 1071-1077.
    [57] C. Liu, D. Wang, and Q. Chen, “Central Pattern Generator Inspired Control for Adaptive Walking of Biped Robots,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1206-1215, 2013.
    [58] J. Han, “Bipedal Walking for a Full-sized Humanoid Robot Utilizing Sinusoidal Feet Trajectories and Its Energy Consumption,” Ph.D. dissertation, Dept. Philosophy in Mech. Eng., Virginia Polytechnic Institute and State Univ. , Apr. 2012.
    [59] S. Buss and J. Kim, “Selectively Damped Least Squares for Inverse Kinematics,” Journal of Graphics Tools, vol. 10, no. 3, pp. 37-49, 2005.
    [60] S. Park, Y. Han and H. Hahn, “Balance Control of a Biped Robot using Camera Image of Reference Object,” International Journal of Control, Automation and Systems, vol. 7, no. 1, pp. 75-84, 2009.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE