簡易檢索 / 詳目顯示

研究生: 楊鎔
Yang, Jung
論文名稱: 利用單顆粒式感應耦合電漿質譜儀分析與比較奈米銀和銀離子經食物暴露在斑馬魚之生物累積和排除
Using Single-Particle ICP-MS to Analyze and Compare the Bioaccumulation and Depuration of Silver Nanoparticles and Silver Ions by Zebrafish through Dietary Exposure
指導教授: 侯文哲
Hou, Wen-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 73
中文關鍵詞: 單顆粒式感應耦合電漿質譜儀食物暴露奈米顆粒生物累積作用毒理動力學
外文關鍵詞: spICP-MS, dietary exposure, nanoparticles, bioaccumulation, toxicokinetic
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著奈米技術的迅速發展,人造奈米物質(ENMs)在工業和商業領域上都具有巨大的潛力。大量的生產和使用奈米物質有可能導致在其產品的生命週期(如:製造、使用、廢棄)中釋放到環境,而去影響到環境中的生物。如若水環境中的奈米物質被底棲生物攝食進入體內並在營養階層轉移,將增加高級掠食者(如:魚類)的飲食暴露風險。
    本研究選擇奈米銀(AgNPs)作為實驗材料,並通過對斑馬魚進行奈米銀顆粒和離子態銀的食物暴露,來評估其生物累積性和淨化動力學。在之前的研究中,我們使用酵素消化方法,利用蛋白酶K消化斑馬魚組織,再配合單顆粒式感應耦合電漿質譜儀(spICP-MS)方法即可檢測魚組織中之奈米顆粒累積,且能得知組織內的奈米顆粒質量濃度、顆粒數濃度與粒徑。在我們的添加實驗中,結果表示此方法對奈米銀和銀離子的質量回收率通常大於90%,而顆粒數濃度的回收率則大於95%,且在消化過程中,奈米銀和銀離子並沒有改變(即溶解或形成顆粒)。
    再者,我們以經濟合作暨發展組織測試規範No. 305 (OECD TG 305) 作為藍本,對斑馬魚進行生物累積性實驗測試,接著使用上述酵素消化方法配spICP-MS方法去分析和比較魚體內之奈米銀和銀離子濃度與粒徑分佈。結果表示,斑馬魚能夠從食物暴露中,在體內累積奈米銀和銀離子,並且其質量累積濃度幾乎相等;而在28天內的淨化階段,結果表示魚體內累積的奈米銀和銀離子能迅速降低至背景濃度。最後,我們利用實驗數據建立一室毒理動力學模型,計算奈米銀和銀離子的生物放大因子(BMF)皆為0.009,表示為不具生物放大作用。所建立的模型參數,在未來可應用於人造奈米物質的環境宿命模擬或交叉驗證(read-across),有利於去評估人造奈米物質的潛在風險。

    As the technology of nano has evolved and grown rapidly, engineered nanomaterials (ENMs) are great potential used in both industrial and commercial sectors. The extensive production and utilization of ENMs might inevitably lead to environmental release. The exposure of the surface water, sediments and benthic species may eventually influence the base of food webs.
    Silver nanoparticles (AgNPs) was chosen as experimental materials. We evaluated the bioaccumulation and depuration kinetics of 35 nm silver nanoparticles (AgNPs) and ionic Ag (as AgNO3) through the dietary route to zebrafish (Danio rerio). Dietary exposure to ionic Ag was used to compare the bioaccumulation behavior of zebrafish to AgNPs. The bioaccumulation in zebrafish was analyzed with enzymatic digestion as the sample pretreatment prior to single particle-inductively coupled plasma-mass spectrometry (spICP-MS) analysis that allows to quantify mass and number concentrations, as well as the size distribution of the test ENMs in zebrafish tissues simultaneously. The spICP-MS method performance test result indicates that the mass recovery of AgNPs and ionic Ag were generally greater than 90% from spiked tissue samples, while those for the number concentrations were than 95%. There was no alteration (i.e., dissolution or particle formation) of AgNPs and AgNO3 in spiked samples during the enzymatic digestion.
    Afterwards, this method was used to analyze zebrafish samples from a bioaccumulation experiment via dietary exposure. The result showed that zebrafish are able to uptake AgNPs and ionic Ag from food, and the dietary bioaccumulation of AgNPs and ionic Ag were almost equal. The depuration result indicates rapid decreases in body burdens to background levels for both ENMs and ionic Ag in 28 days. The bioaccumulated ENM sizes show some decreases with slight AgNPs dissolution. For ionic Ag exposure, particulate Ag signal could be observed, suggesting AgNPs formation in zebrafish.
    Finally, we built a single compartment toxicokinetic (TK) model which is based on a mass balance equation and a first order fitting of experiment data. We found out that the AgNPs mass concentration measured by spICP-MS fitted with first order depuration kinetics very well. The bioaccumulation data adequately fit the TK model (R2 = 0.95).

    摘要 I ABSTRACT III ACKNOWLEDGEMENT V CONTENTS VI LIST OF TABLE VIII LIST OF FIGURE IX Chapter 1 INTRODUCTION 1 1.1 Background and motivation 1 1.2 Objective 4 Chapter 2 LITERATURE REVIEWS 5 2.1 Environmental release and fate of ENMs 5 2.2 The characterization techniques for ENMs 11 2.3 Existing bioaccumulation studies of ENMs in fish 14 2.3.1 Recent studies and guidelines 14 2.3.2 Challenge of testing bioaccumulation of ENMs by fish 27 2.3.3 Nano-specific recommendations and consensus on bioaccumulation testing of ENMs in fish 29 Chapter 3 MATERIALS AND METHODS 30 3.1 Materials and chemicals 30 3.2 Uptake and depuration experiments 31 3.2.1 Exposure conditions 31 3.2.2 Preparation of fish food spiked with AgNPs or Ag ion 32 3.2.3 Releasing experiments – evaluate the spiked fish food 33 3.3 Sampling and pretreatment 34 3.4 Analysis 36 3.4.1 ICP-MS method 36 3.4.2 Enzymatic digestion 37 3.4.3 spICP-MS method 39 3.4.4 TEM characterization 42 Chapter 4 RESULTS AND DISCUSSION 43 4.1 Characterization of silver nanoparticles 43 4.2 Fish food analysis 45 4.3 Evaluation of the performance of enzymatic digestion methods 48 4.4 Dietary exposure studies 50 4.5 Empirical toxicokinetic model of AgNPs and Ag+ in zebrafish 55 Chapter 5 CONCLUSION 62 REFERENCES 64

    (1) Chen, H.; Seiber, J. N.; Hotze, M. ACS Select on Nanotechnology in Food and Agriculture: A Perspective on Implications and Applications. J. Agric. Food Chem. 2014, 62 (6), 1209–1212. https://doi.org/10.1021/jf5002588.
    (2) Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M. S.; Metreveli, G.; Schaumann, G. E.; Schulz, R.; Wagner, S. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ Sci Eur 2018, 30 (1), 6. https://doi.org/10.1186/s12302-018-0132-6.
    (3) Chen, R.-J.; Chen, Y.-Y.; Liao, M.-Y.; Lee, Y.-H.; Chen, Z.-Y.; Yan, S.-J.; Yeh, Y.-L.; Yang, L.-X.; Lee, Y.-L.; Wu, Y.-H.; Wang, Y.-J. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies. IJMS 2020, 21 (7), 2387. https://doi.org/10.3390/ijms21072387.
    (4) Gonza, E. A. Developmental Exposure to Silver Nanoparticles at Environmentally Relevant Concentrations Alters Swimming Behavior in Zebrafish (Danio Rerio). Environmental Toxicology and Chemistry 2018, 7.
    (5) Xu, L.; Wang, Z.; Zhao, J.; Lin, M.; Xing, B. Accumulation of Metal-Based Nanoparticles in Marine Bivalve Mollusks from Offshore Aquaculture as Detected by Single Particle ICP-MS. Environmental Pollution 2020, 260, 114043. https://doi.org/10.1016/j.envpol.2020.114043.
    (6) Peters, R. J. B.; van Bemmel, G.; Milani, N. B. L.; den Hertog, G. C. T.; Undas, A. K.; van der Lee, M.; Bouwmeester, H. Detection of Nanoparticles in Dutch Surface Waters. Science of The Total Environment 2018, 621, 210–218. https://doi.org/10.1016/j.scitotenv.2017.11.238.
    (7) Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F. Detecting Nanoparticulate Silver Using Single-Particle Inductively Coupled Plasma-Mass Spectrometry: Detecting AgNP Using Single-Particle ICP-MS. Environmental Toxicology and Chemistry 2012, 31 (1), 115–121. https://doi.org/10.1002/etc.719.
    (8) Tuoriniemi, J.; Cornelis, G.; Hassellöv, M. Size Discrimination and Detection Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver Nanoparticles. Anal. Chem. 2012, 84 (9), 3965–3972. https://doi.org/10.1021/ac203005r.
    (9) Yang, Y.; Long, C.-L.; Li, H.-P.; Wang, Q.; Yang, Z.-G. Analysis of Silver and Gold Nanoparticles in Environmental Water Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Science of The Total Environment 2016, 563–564, 996–1007. https://doi.org/10.1016/j.scitotenv.2015.12.150.
    (10) Donovan, A. R.; Adams, C. D.; Ma, Y.; Stephan, C.; Eichholz, T.; Shi, H. Single Particle ICP-MS Characterization of Titanium Dioxide, Silver, and Gold Nanoparticles during Drinking Water Treatment. Chemosphere 2016, 144, 148–153. https://doi.org/10.1016/j.chemosphere.2015.07.081.
    (11) Bolaños-Benítez, V.; McDermott, F.; Gill, L.; Knappe, J. Engineered Silver Nanoparticle (Ag-NP) Behaviour in Domestic on-Site Wastewater Treatment Plants and in Sewage Sludge Amended-Soils. Science of The Total Environment 2020, 722, 137794. https://doi.org/10.1016/j.scitotenv.2020.137794.
    (12) Urstoeger, A.; Zacherl, L.; Muhr, M.; Selic, Y.; Wenisch, M.; Klotz, M.; Schuster, M. Magnetic Solid Phase Extraction of Silver-Based Nanoparticles in Aqueous Samples: Influence of Particle Composition and Matrix Effects on Its Application to Environmental Samples and Species-Selective Elution and Determination of Silver Sulphide Nanoparticles with Sp-ICP-MS. Talanta 2021, 225, 122028. https://doi.org/10.1016/j.talanta.2020.122028.
    (13) Cervantes-Avilés, P.; Keller, A. A. Incidence of Metal-Based Nanoparticles in the Conventional Wastewater Treatment Process. Water Research 2021, 189, 116603. https://doi.org/10.1016/j.watres.2020.116603.
    (14) Clark, N. J.; Boyle, D.; Eynon, B. P.; Handy, R. D. Dietary Exposure to Silver Nitrate Compared to Two Forms of Silver Nanoparticles in Rainbow Trout: Bioaccumulation Potential with Minimal Physiological Effects. Environ. Sci.: Nano 2019, 6 (5), 1393–1405. https://doi.org/10.1039/C9EN00261H.
    (15) Abdolahpur Monikh, F.; Chupani, L.; Arenas-Lago, D.; Guo, Z.; Zhang, P.; Darbha, G. K.; Valsami-Jones, E.; Lynch, I.; Vijver, M. G.; van Bodegom, P. M.; Peijnenburg, W. J. G. M. Particle Number-Based Trophic Transfer of Gold Nanomaterials in an Aquatic Food Chain. Nat Commun 2021, 12 (1), 899. https://doi.org/10.1038/s41467-021-21164-w.
    (16) Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure https://www.oecd-ilibrary.org/environment/test-no-305-bioaccumulation-in-fish-aqueous-and-dietary-exposure_9789264185296-en (accessed 2021 -07 -09).
    (17) Selck, H.; Handy, R. D.; Fernandes, T. F.; Klaine, S. J.; Petersen, E. J. Nanomaterials in the Aquatic Environment: A European Union–United States Perspective on the Status of Ecotoxicity Testing, Research Priorities, and Challenges Ahead. Environ Toxicol Chem 2016, 35 (5), 1055–1067. https://doi.org/10.1002/etc.3385.
    (18) Petersen, E. J.; Diamond, S. A.; Kennedy, A. J.; Goss, G. G.; Ho, K.; Lead, J.; Hanna, S. K.; Hartmann, N. B.; Hund-Rinke, K.; Mader, B.; Manier, N.; Pandard, P.; Salinas, E. R.; Sayre, P. Adapting OECD Aquatic Toxicity Tests for Use with Manufactured Nanomaterials: Key Issues and Consensus Recommendations. Environ. Sci. Technol. 2015, 49 (16), 9532–9547. https://doi.org/10.1021/acs.est.5b00997.
    (19) Kühnel, D.; Nickel, C. The OECD Expert Meeting on Ecotoxicology and Environmental Fate — Towards the Development of Improved OECD Guidelines for the Testing of Nanomaterials. Science of The Total Environment 2014, 472, 347–353. https://doi.org/10.1016/j.scitotenv.2013.11.055.
    (20) Handy, R. D.; Ahtiainen, J.; Navas, J. M.; Goss, G.; Bleeker, E. A. J.; von der Kammer, F. Proposal for a Tiered Dietary Bioaccumulation Testing Strategy for Engineered Nanomaterials Using Fish. Environ. Sci.: Nano 2018, 5 (9), 2030–2046. https://doi.org/10.1039/C7EN01139C.
    (21) Handy, R. D.; van den Brink, N.; Chappell, M.; Mühling, M.; Behra, R.; Dušinská, M.; Simpson, P.; Ahtiainen, J.; Jha, A. N.; Seiter, J.; Bednar, A.; Kennedy, A.; Fernandes, T. F.; Riediker, M. Practical Considerations for Conducting Ecotoxicity Test Methods with Manufactured Nanomaterials: What Have We Learnt so Far? Ecotoxicology 2012, 21 (4), 933–972. https://doi.org/10.1007/s10646-012-0862-y.
    (22) Hou, W.-C.; Westerhoff, P.; Posner, J. D. Biological Accumulation of Engineered Nanomaterials: A Review of Current Knowledge. Environ. Sci.: Processes Impacts 2013, 15 (1), 103–122. https://doi.org/10.1039/C2EM30686G.
    (23) Petersen, E. J.; Mortimer, M.; Burgess, R. M.; Handy, R.; Hanna, S.; Ho, K. T.; Johnson, M.; Loureiro, S.; Selck, H.; Scott-Fordsmand, J. J.; Spurgeon, D.; Unrine, J.; Brink, N. W. van den; Wang, Y.; White, J.; Holden, P. Strategies for Robust and Accurate Experimental Approaches to Quantify Nanomaterial Bioaccumulation across a Broad Range of Organisms. Environ. Sci.: Nano 2019, 6 (6), 1619–1656. https://doi.org/10.1039/C8EN01378K.
    (24) Griffitt, R. J.; Hyndman, K.; Denslow, N. D.; Barber, D. S. Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles. Toxicological Sciences 2009, 107 (2), 404–415. https://doi.org/10.1093/toxsci/kfn256.
    (25) Cambier, S.; Røgeberg, M.; Georgantzopoulou, A.; Serchi, T.; Karlsson, C.; Verhaegen, S.; Iversen, T.-G.; Guignard, C.; Kruszewski, M.; Hoffmann, L.; Audinot, J.-N.; Ropstad, E.; Gutleb, A. C. Fate and Effects of Silver Nanoparticles on Early Life-Stage Development of Zebrafish (Danio Rerio) in Comparison to Silver Nitrate. Science of the Total Environment 2018, 11.
    (26) Liu, H.; Wang, X.; Wu, Y.; Hou, J.; Zhang, S.; Zhou, N.; Wang, X. Toxicity Responses of Different Organs of Zebrafish (Danio Rerio) to Silver Nanoparticles with Different Particle Sizes and Surface Coatings. Environmental Pollution 2019, 246, 414–422. https://doi.org/10.1016/j.envpol.2018.12.034.
    (27) Boyle, D.; Goss, G. G. Effects of Silver Nanoparticles in Early Life-Stage Zebrafish Are Associated with Particle Dissolution and the Toxicity of Soluble Silver. NanoImpact 2018, 12, 1–8. https://doi.org/10.1016/j.impact.2018.08.006.
    (28) Chupani, L.; Zusková, E.; Niksirat, H.; Panáček, A.; Lünsmann, V.; Haange, S.-B.; von Bergen, M.; Jehmlich, N. Effects of Chronic Dietary Exposure of Zinc Oxide Nanoparticles on the Serum Protein Profile of Juvenile Common Carp (Cyprinus Carpio L.). Science of The Total Environment 2017, 579, 1504–1511. https://doi.org/10.1016/j.scitotenv.2016.11.154.
    (29) Ladhar, C.; Geffroy, B.; Cambier, S.; Treguer-Delapierre, M.; Durand, E.; Brèthes, D.; Bourdineaud, J.-P. Impact of Dietary Cadmium Sulphide Nanoparticles on Danio Rerio Zebrafish at Very Low Contamination Pressure. Nanotoxicology 2014, 8 (6), 676–685. https://doi.org/10.3109/17435390.2013.822116.
    (30) Clark, N. J.; Clough, R.; Boyle, D.; Handy, R. D. Development of a Suitable Detection Method for Silver Nanoparticles in Fish Tissue Using Single Particle ICP-MS. Environ. Sci.: Nano 2019, 6 (11), 3388–3400. https://doi.org/10.1039/C9EN00547A.
    (31) Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (24), 9361–9369. https://doi.org/10.1021/ac201952t.
    (32) Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48 (17), 10291–10300. https://doi.org/10.1021/es502422v.
    (33) Laborda, F.; Bolea, E.; Jiménez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014, 86 (5), 2270–2278. https://doi.org/10.1021/ac402980q.
    (34) Laborda, F.; Bolea, E.; Cepriá, G.; Gómez, M. T.; Jiménez, M. S.; Pérez-Arantegui, J.; Castillo, J. R. Detection, Characterization and Quantification of Inorganic Engineered Nanomaterials: A Review of Techniques and Methodological Approaches for the Analysis of Complex Samples. Analytica Chimica Acta 2016, 904, 10–32. https://doi.org/10.1016/j.aca.2015.11.008.
    (35) Montaño, M. D.; Badiei, H. R.; Bazargan, S.; Ranville, J. F. Improvements in the Detection and Characterization of Engineered Nanoparticles Using SpICP-MS with Microsecond Dwell Times. Environ. Sci.: Nano 2014, 1 (4), 338–346. https://doi.org/10.1039/C4EN00058G.
    (36) Taboada-López, M. V.; Alonso-Seijo, N.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Determination and Characterization of Silver Nanoparticles in Bivalve Molluscs by Ultrasound Assisted Enzymatic Hydrolysis and Sp-ICP-MS. Microchemical Journal 2019, 148, 652–660. https://doi.org/10.1016/j.microc.2019.05.023.
    (37) Zhou, Q.; Liu, L.; Liu, N.; He, B.; Hu, L.; Wang, L. Determination and Characterization of Metal Nanoparticles in Clams and Oysters. Ecotoxicology and Environmental Safety 2020, 198, 110670. https://doi.org/10.1016/j.ecoenv.2020.110670.
    (38) Sayadi, M. H. Bioaccumulation and Toxicokinetics of Zinc Oxide Nanoparticles (ZnO NPs) Co-Exposed with Graphene Nanosheets (GNs) in the Blackfish (Capoeta Fusca). 2021, 10.
    (39) Zhang, J. Market Analysis for Nanomaterials 2020. 2020, 2.
    (40) Zhang, J. The Effects and the Potential Mechanism of Environmental Transformation of Metal Nanoparticles on Their Toxicity in Organisms. 2018, 20.
    (41) Tortella, G. R. Silver Nanoparticles_ Toxicity in Model Organisms as an Overview of Its Hazard for Human Health and the Environment. Journal of Hazardous Materials 2020, 21.
    (42) Nanomaterials in REACH and CLP - Environment - European Commission https://ec.europa.eu/environment/chemicals/nanotech/reach-clp/index_en.htm (accessed 2021 -06 -26).
    (43) McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver Nanoparticles in the Environment: Sources, Detection and Ecotoxicology. Science of The Total Environment 2017, 575, 231–246. https://doi.org/10.1016/j.scitotenv.2016.10.041.
    (44) Search Database - The Nanodatabase https://nanodb.dk/en/search-database/?keyword=silver (accessed 2021 -06 -26).
    (45) Lopez-Serrano, A.; Olivas, R. M.; Landaluze, J. S.; Camara, C. Nanoparticles: A Global Vision. Characterization, Separation, and Quantification Methods. Potential Environmental and Health Impact. Critical Review 2014, 19.
    (46) Aznar, R.; Barahona, F.; Geiss, O.; Ponti, J.; José Luis, T.; Barrero-Moreno, J. Quantification and Size Characterisation of Silver Nanoparticles in Environmental Aqueous Samples and Consumer Products by Single Particle-ICPMS. Talanta 2017, 175, 200–208. https://doi.org/10.1016/j.talanta.2017.07.048.
    (47) Filipe, V.; Hawe, A.; Jiskoot, W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. 15.
    (48) Mudalige, T. K.; Qu, H.; Linder, S. W. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona. Anal. Chem. 2015, 7.
    (49) Abdolahpur Monikh, F.; Chupani, L.; Zusková, E.; Peters, R.; Vancová, M.; Vijver, M. G.; Porcal, P.; Peijnenburg, W. J. G. M. Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. Environ. Sci. Technol. 2019, 53 (2), 946–953. https://doi.org/10.1021/acs.est.8b03715.
    (50) Avramescu, M.-L.; Rasmussen, P. E.; Chénier, M.; Gardner, H. D. Influence of PH, Particle Size and Crystal Form on Dissolution Behaviour of Engineered Nanomaterials. Environ Sci Pollut Res 2017, 24 (2), 1553–1564. https://doi.org/10.1007/s11356-016-7932-2.
    (51) European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment: Chapter R.11: PBT and VPvB Assessment.; Publications Office: LU, 2017.
    (52) Clark, N. J.; Shaw, B. J.; Handy, R. D. Low Hazard of Silver Nanoparticles and Silver Nitrate to the Haematopoietic System of Rainbow Trout. Ecotoxicology and Environmental Safety 2018, 152, 121–131. https://doi.org/10.1016/j.ecoenv.2018.01.030.
    (53) Kleiven, M.; Rosseland, B. O.; Teien, H.-C.; Joner, E. J.; Helen Oughton, D. Route of Exposure Has a Major Impact on Uptake of Silver Nanoparticles in Atlantic Salmon ( Salmo Salar ): Dietary Uptake of AgNPs in Atlantic Salmon. Environ Toxicol Chem 2018, 37 (11), 2895–2903. https://doi.org/10.1002/etc.4251.
    (54) Ates, M.; Arslan, Z.; Demir, V.; Daniels, J.; Farah, I. O. Accumulation and Toxicity of CuO and ZnO Nanoparticles through Waterborne and Dietary Exposure of Goldfish ( Carassius Auratus ): Accumulation and Toxicity of CuO and ZnO NPs. Environ. Toxicol. 2015, 30 (1), 119–128. https://doi.org/10.1002/tox.22002.
    (55) Ramsden, C. S.; Smith, T. J.; Shaw, B. J.; Handy, R. D. Dietary Exposure to Titanium Dioxide Nanoparticles in Rainbow Trout, (Oncorhynchus Mykiss): No Effect on Growth, but Subtle Biochemical Disturbances in the Brain. Ecotoxicology 2009, 18 (7), 939–951. https://doi.org/10.1007/s10646-009-0357-7.
    (56) Sung, H. K.; Jo, E.; Kim, E.; Yoo, S.; Lee, J.; Kim, P.; Kim, Y.; Eom, I.-C. Analysis of Gold and Silver Nanoparticles Internalized by Zebrafish (Danio Rerio) Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Chemosphere 2018, 209, 815–822. https://doi.org/10.1016/j.chemosphere.2018.06.149.
    (57) Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS | SpringerLink https://link.springer.com/article/10.1007/s00216-013-7431-y?error=cookies_not_supported&code=7db08fca-c0f7-4194-bbce-a65e8a0af624 (accessed 2021 -06 -27).
    (58) Gray, E. P.; Coleman, J. G.; Bednar, A. J.; Kennedy, A. J.; Ranville, J. F.; Higgins, C. P. Extraction and Analysis of Silver and Gold Nanoparticles from Biological Tissues Using Single Particle Inductively Coupled Plasma Mass Spectrometry. Environ. Sci. Technol. 2013, 47 (24), 14315–14323. https://doi.org/10.1021/es403558c.
    (59) Vidmar, J. Comparison of the Suitability of Alkaline or Enzymatic Sample Pre-Treatment for Characterization of Silver Nanoparticles in Human Tissue by Single Particle ICP-MS. 2018, 10.
    (60) Kuehr, S.; Meisterjahn, B.; Schröder, N.; Knopf, B.; Völker, D.; Schwirn, K.; Schlechtriem, C. Testing the Bioaccumulation of Manufactured Nanomaterials in the Freshwater Bivalve Corbicula Fluminea Using a New Test Method. Environ. Sci.: Nano 2020, 7 (2), 535–553. https://doi.org/10.1039/C9EN01112A.
    (61) Peters, R. J. B.; Rivera, Z. H.; van Bemmel, G.; Marvin, H. J. P.; Weigel, S.; Bouwmeester, H. Development and Validation of Single Particle ICP-MS for Sizing and Quantitative Determination of Nano-Silver in Chicken Meat. Anal Bioanal Chem 2014, 406 (16), 3875–3885. https://doi.org/10.1007/s00216-013-7571-0.
    (62) Kollander, B.; Widemo, F.; Ågren, E.; Larsen, E. H.; Loeschner, K. Detection of Lead Nanoparticles in Game Meat by Single Particle ICP-MS Following Use of Lead-Containing Bullets. Anal Bioanal Chem 2017, 409 (7), 1877–1885. https://doi.org/10.1007/s00216-016-0132-6.
    (63) Clark, N. J.; Clough, R.; Boyle, D.; Handy, R. D. Quantification of Particulate Ag in Rainbow Trout Organs Following Dietary Exposure to Silver Nitrate, or Two Forms of Engineered Silver Nanoparticles. Environ. Sci.: Nano 2021, 10.1039.D1EN00188D. https://doi.org/10.1039/D1EN00188D.
    (64) Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms - Environmental Science: Nano (RSC Publishing) https://pubs.rsc.org/en/content/articlelanding/2019/EN/C8EN01378K (accessed 2021 -06 -23).
    (65) Al-Sid-Cheikh, M.; Rouleau, C.; Bussolaro, D.; Oliveira Ribeiro, C. A.; Pelletier, E. Tissue Distribution of Radiolabeled 110m Ag Nanoparticles in Fish: Arctic Charr ( Salvelinus Alpinus ). Environ. Sci. Technol. 2019, 53 (20), 12043–12053. https://doi.org/10.1021/acs.est.9b04010.
    (66) Connolly, M.; Fernández, M.; Conde, E.; Torrent, F.; Navas, J. M.; Fernández-Cruz, M. L. Tissue Distribution of Zinc and Subtle Oxidative Stress Effects after Dietary Administration of ZnO Nanoparticles to Rainbow Trout. Sci Total Environ 2016, 551–552, 334–343. https://doi.org/10.1016/j.scitotenv.2016.01.186.
    (67) Basuini, M. F. E. Effect of Different Levels of Dietary Copper Nanoparticles and Copper Sulfate on Growth Performance, Blood Biochemical Profiles, Antioxidant Status and Immune Response of Red Sea Bream (Pagrus Major). 2016, 9.
    (68) Skjolding, L. M.; Winther-Nielsen, M.; Baun, A. Trophic Transfer of Differently Functionalized Zinc Oxide Nanoparticles from Crustaceans (Daphnia Magna) to Zebrafish (Danio Rerio). Aquatic Toxicology 2014, 8.
    (69) Guidance on Information Requirements and Chemical Safety Assessment.Pdf.
    (70) Monikh, F. A.; Chupani, L.; Smerkova, K.; Bosker, T.; Cizar, P.; Krzyzanek, V.; Richtera, L.; Franek, R.; Zuskova, E.; Skoupy, R.; Darbha, G. K.; Vijver, M.; Valsami-Jones, E.; Peijnenburg, W. Engineered Nanoselenium Supplemented Fish Diet: Toxicity Comparison with Ionic Selenium and Stability against Particle Dissolution, Aggregation and Release. Environmental Science 2020, 12.
    (71) Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48 (17), 10291–10300. https://doi.org/10.1021/es502422v.
    (72) Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS | SpringerLink https://link.springer.com/article/10.1007/s00216-013-7228-z?error=cookies_not_supported&code=f01f72a0-9c80-479f-91e0-759c6c561b6c (accessed 2021 -06 -29).
    (73) Erickson, H. P. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. 20.
    (74) Xiao, B. Bioaccumulation Kinetics and Tissue Distribution of Silver Nanoparticles in Zebrafish_ The Mechanisms and Influence of Natural Organic Matter. Ecotoxicology and Environmental Safety 2020, 7.
    (75) Sayadi, M. H. Exposure Effects of Iron Oxide Nanoparticles and Iron Salts in Blackfish (Capoeta Fusca): Acute Toxicity, Bioaccumulation, Depuration, and Tissue Histopathology. 2020, 10.

    無法下載圖示 校內:2026-08-23公開
    校外:2026-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE