簡易檢索 / 詳目顯示

研究生: 余浩綸
Yu, Hao-Lun
論文名稱: 新型無刷繞線式游標馬達之設計與實現
Design and Implementation of Novel Brushless Wound Field Vernier Motor
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 102
中文關鍵詞: 無刷繞線式同步馬達游標馬達零稀土化零磁石化
外文關鍵詞: magnet-free, vernier motor, wound field synchronous motor, brushless excitation
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 稀土是現今各產業不可或缺的重要資源,其開採過程卻對環境造成了極大的威脅。為了因應稀土開採的環境議題與日益枯竭的稀土資源,商業上對於馬達零稀土化/零磁石化之發展需求日漸提高,使繞線式同步馬達重新被人們所關注。然而,傳統繞線式同步馬達運作過程的電刷摩擦,會造成額外損失、磨損、維護等問題,對長期運轉操作產生不利的影響,因此繞線式馬達無刷化成為工程上待解決的議題。
      常見的諧波無刷勵磁方法需要多組驅動器、複雜繞線拓撲或是非正弦電流注入,使其增加額外驅動器成本或較低定子線圈佔槽率。因此,本文欲探索以單驅動器、常見繞線拓撲實現繞線式馬達無刷化之概念,最終提出一創新無刷繞線式馬達架構,以繞線式馬達為基礎加入游標馬達之運作原理使馬達無刷化,並探討新架構之可行性、馬達特性及限制。

    In response to the environmental concerns associated with rare earth mining and the growing depletion of these resources, there has been an escalating demand in the commercial sector for the development of magnet-free technologies in motors. Consequently, the wound field synchronous motor has regained attention. However, the conventional operation of motor, characterized by brush friction, gives rise to additional losses and maintenance issues. Hence, the transformation of this motors into brushless configurations has become an outstanding engineering challenge.
      Methods for harmonic brushless excitation necessitate multiple sets of drivers, intricate winding topologies, or non-sinusoidal current injection, thereby escalating the cost of additional drivers or reducing the fill factor of stator coil slots. Therefore, this paper aims to explore the concept of achieving brushless transformation in wound field motors using a single driver and common winding topologies. Ultimately, an innovative brushless wound field motor architecture is proposed, incorporating the operational principles of vernier motor into the foundation of wound field motors to achieve brushless capabilities. The feasibility, motor characteristics, and limitations of this novel architecture are thoroughly investigated.

    摘要 I 目錄 XX 表目錄 XXIV 圖目錄 XXVI 符號表 XXXI 第一章 緒論 1 1.1 研究背景 1 1.2 馬達種類 2 1.2.1 繞線式同步馬達 2 1.2.2 永磁游標電機 3 1.3 研究動機與目的 4 1.4 論文架構 6 第二章 文獻回顧 7 2.1 無刷繞線式同步馬達 7 2.2 游標電機 16 2.3 小結 21 第三章 新型無刷繞線式游標馬達架構與工作原理 22 3.1 前言 22 3.2 游標馬達之工作原理與槽極配設計 22 3.2.1 反電動勢方程式 25 3.2.2 轉矩方程式 26 3.3 新型無刷繞線式游標馬達架構 27 3.4 新型無刷繞線式游標馬達之工作原理 30 3.5 新型馬達之轉子等效電路分析 31 3.5.1 定子磁通密度與轉子極對數對感應電壓之影響 33 3.5.2 勵磁端轉子繞組之感應電壓推導 35 3.5.3 馬達端轉子繞組之感應電壓推導 37 3.5.4 全橋整流電路分析 39 3.6 新型無刷繞線式游標馬達特性分析 41 3.7 三相座標軸之馬達數學模型 42 3.8 座標軸轉換 43 3.9 旋轉座標軸系統之馬達數學模型 45 第四章 設計流程與模擬特性評估 47 4.1 一般同步馬達之設計流程 47 4.1.1 傳統繞線式同步馬達之設計流程 47 4.1.2 基於ANSYS 2D有限元素法之模擬方法 48 4.1.3 應用傳統設計流程於新型無刷繞線式游標馬達 50 4.2 新型無刷繞線式游標馬達之設計流程 53 4.2.1 轉子繞組端部高度計算 56 4.3 效率分析 57 4.3.1 槽極配之效率趨勢 58 4.3.2 轉定子分割率之效率趨勢 60 4.3.3 額定轉速與有無靴部選定之效率趨勢 65 4.3.4 小結 67 4.4 馬達特性曲線圖 69 4.4.1 弱磁曲線演算法 70 4.4.2 最大轉矩搜尋演算法 76 4.4.3 電感電阻改變演算法 82 4.4.4 小結 86 第五章 原型機製造與實驗驗證 89 5.1 加工細節 89 5.1.1 轉、定子矽鋼片加工 90 5.1.2 轉定子繞線配置 92 5.2 測試環境及規劃 94 5.2.1 馬達驅動器架構 95 5.2.2 定頻三相電流輸入測試 96 第六章 結論與建議 98 6.1 結論 98 6.2 建議 98 參考文獻 99

    [1]曾台輔,鄭雅文,吳佳樺,產業脈動,全球馬達市場與產業發展趨勢解析,機械淨零碳排技術專輯-機械工業雜誌-機械工業網,Available [Online]https://www.automan.tw/magazine/magazineContent.aspx?id=5688
    [2]魯皓平,科技背後的沉痛代價!稀土讓環境陷入死寂,遠見雜誌,Available [Online]https://www.gvm.com.tw/article/42377
    [3]薛乃綺,侯貫智,產業評析開發不使用稀土材料的馬達日益重要,金屬中心
    [4]S. Sakurai, and T. Suwazono, “EV Traction Wound Field Synchronous Motor,” MEIDEN REVIEW, Series no. 182, no. 2, 2021.
    [5]F. Kutt, M. Michna, and G. Kostro, “Non-Salient Brushless Synchronous Generator Main Exciter Design for More Electric Aircraft,” Energies, vol. 13, no. 11, pp. 2696, May 2020.
    [6]A. Toba, and T. A. Lipo, “Generic torque-maximizing design methodology of surface permanent-magnet vernier machine,” IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1539-1546, Nov.-Dec. 2000.
    [7]Q. Ali, T. A. Lipo, and B. Kwon, “Design and analysis of a novel brushless wound rotor synchronous machine,” in Proceeding of IEEE International Magnetics Conference (INTERMAG), Beijing, China, pp. 1-1, 2015.
    [8]S. S. H. Bukhari, G. J. Sirewal, F. A. Chachar, and J.-S. Ro, “Dual-Inverter-Controlled Brushless Operation of Wound Rotor Synchronous Machines Based on an Open-Winding Pattern,” Energies, vol. 13, no. 9, pp. 2205, May 2020.
    [9]S. S. H. Bukhari, G. J. Sirewal, M. Ayub, and J. S. Ro, “A New Small-Scale Self-Excited Wound Rotor Synchronous Motor Topology,” IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-5, Art no. 8200205, Feb. 2021.
    [10]S. M. S. H. Rafin, Q. Ali, and S. Khan, “A novel two-layer winding topology for sub-harmonic synchronous machines,” Springer on Electrical Engineering, no. 104, pp 3027–3035, 2022.
    [11]C. H. Lee, “Vernier Motor and Its Design,” IEEE Transactions on Power Apparatus and Systems, vol. 82, no. 66, pp. 343-349, June 1963.
    [12]A. Ishizaki, T. Tanaka, K. Takasaki, and S. Nishikata, “Theory and optimum design of PM Vernier motor,” in Proceeding of Seventh International Conference on Electrical Machines and Drives, Publ. No. 412, Durham, UK, pp. 208-212, 1995.
    [13]Y. Oner, Z. Q. Zhu, and W. Chu, “Comparative Study of Vernier and Interior PM Machines for Automotive Application,” in Proceeding of IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, pp. 1-6, 2016.
    [14]E. Spooner, and L. Haydock, “Vernier hybrid machines,” IEEE Proc. on Electric Power Applications, vol.150, no. 6, pp. 655-662,7 Nov. 2003.
    [15]D. Li, R. Qu, and T. A. Lipo, “High-Power-Factor Vernier Permanent Magnet Machines,” IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3664-3674, Nov.-Dec. 2014.
    [16]Y. Kataoka, M. Takayama, Y. Matsushima, and Y. Anazawa, “Comparison of three magnet array-type rotors in surface permanent magnet-type vernier motor,” in Proceeding of 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, pp. 1-6, 2012.
    [17]L. Xu, G. Liu, W. Zhao, J. Ji, H. Zhou, W. Zhao, and T. Jiang, “Quantitative comparison of integral and fractional slot permanent magnet vernier motors,” IEEE Transaction Energy Conversion, vol. 30, no. 4, pp. 1483– 1495, Dec. 2015.
    [18]S. L. Ho, S. Niu, and W. N. Fu, “Design and Comparison of Vernier Permanent Magnet Machines,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3280-3283, Oct. 2011.
    [19]D. Li, R. Qu, J. Li, and W. Xu, “Consequent-Pole Toroidal-Winding Outer-Rotor Vernier Permanent-Magnet Machines,” IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4470-4481, Nov.-Dec. 2015.
    [20]陳桂村,IPMSM擴展區間(MTPA&FW)速度控制模擬分析,勢流科技,2016
    [21]徐藝明,永磁游標馬達轉矩諧波分析與優化設計,天津大學電氣自動化與信息工程學院碩士學位論文,2019
    [22]T. A. Lipo, Introduction to AC Machine Design, Wiley-IEEE Press, 2017.
    [23]K. Atallah, S. D. Calverley, and D. Howe, “High-performance magnetic gears,” Journal of Magnetism and Magnetic Materials, vol. 272–276, pp E1727-E1729, 2004.
    [24]B. Kim and T. A. Lipo, “Operation and Design Principles of a PM Vernier Motor,” IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3656-3663, Nov.-Dec. 2014.
    [25]陳念慈,碳化矽功率元件應用於永磁同步馬達驅動器之系統響應分析,國立成功大學電機工程學系,2019
    [26]D. C. Hanselman, Brushless permanent magnet motor design, Writers' Collective, 2003
    [27]J. Pyrhonen, T. Jokinen, and V. Hrabovcova, Design of Rotating Electrical Machines, John Wiley & Sons, 2009.
    [28]余軻,永磁游標電機的無位置感測器控制系統研究,東南大學工程學院碩士學位論文,2021
    [29]P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd ED, Wiley India Pvt. Limited, 2010.

    無法下載圖示 校內:2028-07-26公開
    校外:2028-07-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE