簡易檢索 / 詳目顯示

研究生: 邱志豪
Chiu, Chih-hao
論文名稱: 基於視覺回授與多取樣頻率控制之光纖對位平台研究
A Study on Vision-Based and Multirate Control of an Optical Fiber Alignment Stage
指導教授: 鄭銘揚
Cheng, Ming-yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 壓電致動器光纖對位多取樣頻率控制
外文關鍵詞: Optical Fiber Alignment, Piezoelectric Actuator, Multirate Control
相關次數: 點閱:72下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光纖傳輸頻寬是電纜傳輸頻寬的數百倍以上,且隨著近年來光通訊技術的發展成熟,因此光纖通訊系統儼然已成為有線通訊的主流。然而光纖與光學元件耦合時之複雜程度高且光能量損失無可避免,形成了降低成本的一個瓶頸,使得光纖的自動組裝定位技術需求更顯迫切。
    本論文利用壓電致動器(PEA)具有高解析度、體積小、低耗能、響應快速等優點,搭配機器視覺發展一光纖微定位平台。由於壓電致動器之定位精準度往往受到其非線性磁滯現象(hysteresis)與參數隨溫度改變的特性所影響,故使用B-spline近似磁滯模型做為前饋反磁滯控制器,藉以補償其磁滯現象。此外,並設計模糊邏輯控制器改善因雜訊干擾及建模之不確定性所產生的誤差量,再利用各種不同的參考命令來測試其伺服控制架構之強健性與精確度。
    在視覺伺服控制應用方面,由於視覺感測器(vision sensor)具有時間延遲(latency)的特性,造成視覺命令不平滑且動態響應較差的缺點,因此為了提升具有視覺回授的系統性能,本論文採用多取樣頻率控制(multirate control)之策略,縮短系統之控制週期進而改善視覺落後的現象,期能與壓電致動平台整合成一個具有較佳性能之視覺光纖對位系統。經實驗結果顯示,本論文所提之方法效果良好。

    Due to the fact that the bandwidth of optic fiber transmission is several hundred times greater than cable transmission and optical communication technology is well-developed and has advanced in recent years, the optic fiber communication system has become the mainstream of wired communication. However, the coupling procedure between optic fiber and the waveguide is very complex so that the coupling loss caused by disalignment is inevitable. This creates an obstacle to cost reduction. Hence the technological demand of auto-assembly and positioning control cannot be overlooked.
    The advantages of the Piezoelectric actuator (PEA) include high resolution, compactness, low energy consumption, and rapid response. This thesis takes advantages of PEA to develop a vision-based optical fiber alignment platform. However, the tracking control accuracy of PEA is limited due to its inherent hysteretic nonlinearity and time varying parameters. In order to cope with this difficulty, a feedforward inverse hysteresis controller based on a B-spline approximation model is adopted to eliminate the hysteresis effects. In addition, a fuzzy logic controller is designed to reduce the error due to noise and model uncertainty. The accuracy and robustness of the servo control scheme are verified via a variety of reference inputs.
    In addition, the vision latency problem makes the visual command unsmooth and the performance is degraded. In order to improve the performance of the system with visual feedback, the idea of multirate control was exploited to shorten the sampling period of the control system. Experimental results show that the proposed approach exhibits satisfactory performance.

    中文摘要....................................I 英文摘要...................................II 誌謝..........................................IV 目錄...........................................V 表目錄....................................VII 圖目錄...................................VIII 第一章 緒論.................................1 1-1 前言...................................1 1-2 文獻回顧...........................2 1-2-1 壓電致動平台.......................2 1-2-2 光纖對位平台.......................3 1-3 研究動機與目的.....................7 1-4 論文大綱...........................8 第二章 壓電致動器介紹.......................9 2-1 壓電致動器.........................9 2-2 壓電效應..........................10 2-3 潛變效應..........................12 2-4 磁滯現象..........................12 第三章 壓電致動平台控制....................18 3-1 模糊邏輯理論簡介..................18 3-2 基本模糊控制系統架構..............20 3-3 壓電致動平台之控制器設計..........21 3-3-1 前饋補償..........................21 3-3-2 回饋控制器........................24 第四章 基於視覺回授之光纖對位系統 .........32 4-1 視覺伺服技術與控制架構介紹........32 4-2 求取光纖影像重心..................35 4-2-1 重心法............................36 4-2-2 基於重心求取直線方程式法..........38 4-3 多取樣頻率控制....................40 第五章 實驗結果與討論......................46 5-1 實驗軟硬體設備....................46 5-2 壓電致動平台控制實驗..............53 5-2-1 精密定位控制......................53 5-2-2 命令追蹤控制......................62 5-3 基於視覺回授之光纖對位實驗........73 第六章 結論與建議..........................83 6-1 結論..............................83 6-2 未來研究方向與建議................84 參考文獻...................................85

    [1] Harry J.R. Dutton, Understanding Optical Communication, IBM Corp., International Technical Support Organization, Sep. 1998.
    [2] 陳柏睿, 光纖自動對準組裝技術研發, 碩士論文, 國立台灣大學機械工程學系, 2001年.
    [3] 馮榮豐, 奈微米工程精密製程與量測技術, 滄海書局, 2002年.
    [4] D. Croft, and S. Devasia, “Hysteresis and Vibration Compensation for Piezoactuators,” Journal of Guidance, Control, and Dynamics, vol. 21, no. 5, pp.710-717, 1998.
    [5] C.J. Lin, and S.R. Yang, “Modeling of a Piezo-Actuator Position Stage Based on a Hysteresis Observer,” Asian Journal of Control, vol. 7, no. 1, pp. 73-80, Mar. 2005.
    [6] G. Michael, and C. Nikola, “Modeling Piezoelectric Stack Actuator for Control of Micromanipulation,” IEEE Control System Magazine, vol. 17, no.3, pp.69-79, June 1997.
    [7] G.S. Choi, H.S. Kim, and G.H. Choi, “A Study on Position Control of Piezoelectric Actuators,” IEEE International Symposium on Industrial Electronics, vol. 3, pp.851-855, 1997.
    [8] P.N. Sreeram, G. Salvady, and N.G. Naganatham, “Hysteresis Prediction for a Piezoceramic Material System,” in Proc. of the 1993 ASME Winter Annual Meeting New Orlearns, New Orlearns, La, USA, ASME Aerospace Division, vol. 35, 1993, pp.35-42.
    [9] P. Ge, and M. Jouaneh, “Tracking Control of a Piezoceramic Actuator,” IEEE Trans. on Control System Technology, vol. 4, no. 3, pp.209-216, 1996.
    [10] Y. Yu, N. Naganathan, and R. Dukkipati, “Preisach Modeling of Hysteresis for Piezoceramic Actuator System,” Mechanism and Machine Theory, vol. 37, no. 1, pp. 49-59, Jan. 2002.
    [11] G. Song, J. Zhao, X. Zhou, and J. Alexis De Abreu-Garcia, “Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model,” IEEE/ASME Trans. on Mechatronics, vol. 10, no. 2, pp.198-209, Apr. 2005.
    [12] M.Y. Sung, and S.J. Huang, “Fuzzy Logic Motion Control of a Piezoelectrically Actuated Table,” in Proc. of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 218, no. 5, Aug. 2004, pp. 381-397.
    [13] M. Sharma, S.P. Singh, and B.L. Sachdeva, “Fuzzy logic based active vibration control of beams using piezoelectric patches,” in Proc. of SPIE - The International Society for Optical Engineering, vol. 5062, no. 2, 2002, pp. 538-544.
    [14] C.Y. Su, “Robust Control of Piezoelectric Actuated Systems with Unknown Hysteresis,” in Proc. of SPIE - The International Society for Optical Engineering, vol. 3984, 2000, pp.186-194.
    [15] M. Sasaki, M. Kawafuku, T. Katsuno, and F. fijisawa, “Neural Network for Trajectory Tracking Control of a Flexible Micro-Manipulator,” in Proc. of IEEE Int. Conf. Syst. Man, Cybern., 1996, pp. 648-654.
    [16] M.S. Cohen, M.F. Cina, M.M. Opyrsko, J.L. Speidell, F.J. Canora, and M.J. Defranza, “Packaging of High-Density Fiber/Laser Modules Using Passive Alignment Techniques,” IEEE Trans. on Component, Hybrids, and Manufacturing Technology, vol. 15, no. 6, pp.944-955, Dec. 1992.
    [17] M.F. Dautartas, G.E. Blonder, Y.H. Wong, and Y.C. Chen, “A Self-Aligned Optical Subassembly for Muti-Mode Devices,” IEEE Trans. on Component, Packaging, and Manufacturing Technology-Part B, vol. 18, no. 3, pp.552-557, Aug. 1995.
    [18] M.W. Beranek, et al., “Passive Alignment Optical Subassemblies for Military / Aerospace Fiber-Optic Transmitter/Receiver Modules,” IEEE Trans. on Advanced Packaging, vol. 23, no.3, pp.461-469, 2000.
    [19] Jeffery C.C. Lo ,and S.W. Ricky Lee, “Experimental Assessment of Passive Alignment of Optical Fibers with V-grooves on Silicon Optical Bench,” in Proc. of 6th Electronics Packaging Technology Conference, 2004, pp.375-380.
    [20] C.R. Witham, M.W. Beranek, B.R. Carlisle, E.Y. Chan, and D.G. Koshinz, “Fiber-Optic Pigtail Assembly and Attachment Alignment Shift Using a Low-Cost Robotic Platform,” IEEE Electronic Components and Technology Conf., 2000, pp.21-25.
    [21] D.T. Pham, and M. Castellani, “Intelligent control of fibre optic components assembly,” in Proc. of Instn. Mech. Engrs., vol. 215 Part B, no. 9, 2001, pp.1177-1189.
    [22] C.L. Chu, S.H. Lin, Z.Y. Fu, and K.K. Yen, “The Development of an Optical Fiber Alignment and Fusion Machine,” in IEEE Int. Conf. on Mechatronics, July 10-12 2005, pp.472-476.
    [23] R.M. Lewis, V. Torczon, and M.W. Trosset, “Direct search methods : then and now,” Journal of Computational and Applied Mathematics, vol. 124, Issuess 1-2, pp.191-207, Dec. 2000.
    [24] D.T. Pham, and M. Castellani, “Evolutionary fuzzy logic system for intelligent fibre optic components assembly,” in Proc. of Instn. Mech. Engrs., vol. 216 Part C, pp. 571-581, 2002.
    [25] 林政緯, 基於視覺之即時光纖對位研究, 碩士論文, 國立成功大學電機工程學系, 2006年.
    [26] H. Fujimoto, Y. Hori, and A. Kawamura, “Perfect Tracking Control Based on Multirate Feedforward Control With Generalized Sampling Periods,” IEEE Trans. on Industrial Electronics, vol. 48, no. 3, pp.636-644, June 2001.
    [27] 李傑仁, 具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用, 碩士論文, 國立成功大學航空太空工程學系, 2003年.
    [28] 廖睿杰, DSP-Based長行程氣壓壓電高精密定位伺服系統之設計與研究, 碩士論文,國立台灣科技大學自動化及控制研究所, 2004年.
    [29] 顧孝鈞, 壓電微致動器之製作與量測, 碩士論文, 大葉大學機械工程學系, 2003年.
    [30] 林得耀, 以壓電致動器遲滯模型為基礎之控制補償, 碩士論文, 國立彰化師範大學機電工程學系, 2003年.
    [31] P. Ge, and M. Jouaneh, “Modeling Hysteresis in Piezoceramic Actuators,” Precision Engineering, vol. 17, no. 3, pp. 211-221, July 1995.
    [32] T.S. Low, and W. Guo, “Modeling of a Three-Layer Piezoelectric Bimorph Beam with Hysteresis,” Journal of Microelectromechanical Systems, vol. 4, no. 4, pp.230-237, Dec. 1995.
    [33] T.L. Chern, and Y.C. Wu, “Design of Integral Variable Structure Controller and Application to Electrohydraulic Velocity Servo systems,” IEE Proceedings-D, vol. 138, no. 5, Sep. 1991, pp. 439-444.
    [34] L.A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp.338-353, 1965.
    [35] E.H. Mamdani, “Application of Fuzzy Algorithms for Control a Simple Dynamic Plant,” in Proc. of the Institution of Electrical Engineers, vol. 121, no. 12, Dec. 1974, pp.1585-1588.
    [36] 孫宗瀛, 楊英魁, Fuzzy控制:理論、實作與應用, 全華科技圖書股份有限公司, 2005年.
    [37] H. Hu, and R. Ben Mrad, “On the Classical Preisach Model for Hysteresis in Piezoceramic Actuators,” Mechatronics, vol. 13, no.3, pp. 85-94, Mar. 2003.
    [38] 宋孟瑛, 壓電驅動平台之光耦合應用, 碩士論文, 國立台灣科技大學機械工程學系, 2003年.
    [39] 王文俊, 認識Fuzzy, 全華科技圖書股份有限公司, 2005年.
    [40] S.H. Kim, and B.K. Kim, “Analysis on Time-Delay of Commercial Off-The-Shelf Vision System considering Motion-Blur,” in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, Oct. 29-Nov. 03, 2001, pp. 2080-2085.
    [41] G. Welch, and G. Bishop, An Introduction to the Kalman Filter, Technical Report, University of North Carolina at Chapel Hill, 2001.
    [42] E. Brookner, “Tracking and Kalman Filtering Made Easy,” Wiley Interscience, 1998.
    [43] S. Hutchinson, G. D. Hager, and P. I. Corke, “A Tutorial on Visual Servo Control,” IEEE Trans. on Robotics and Automation, vol. 12, pp. 651-670, 1996.
    [44] R.C. Gonzalez, and R.E. Woods, Digital Image Processing, Second Edition, Addison Wesley, 2002.
    [45] M. Nemani, T.C. Tsao, and S. Hutchinson, “Multi-rate analysis and design of visual feedback digital servo-control system,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 116, no. 1, pp. 45-55, Mar. 1994.
    [46] T.P. Sim, G.S. Hong, and K.B. Lim, “Multirate predictor control scheme for visual servo control,” in Proc. of IEE Control Theory Appl., vol. 149, no.2, Mar. 2002. pp. 117-124.
    [47] F. Marcassa, and R. Oboe, “Disturbance rejection in hard disk drives with multi-rate estimated state feedback,” Control Engineering Practice, vol. 12, no. 11, pp. 1409-1421, Nov. 2004.
    [48] P.I. Corke, and M.G. Good, “Dynamic Effects in Visual Closed-Loop Systems,” IEEE Trans. on Robotics and Automation, vol. 12, no. 5, pp.671-683, Oct. 1996.
    [49] 李祖聖, 高等模糊控制, 國立成功大學電機工程研究所上課講義.
    [50] 工業技術研究院, PMC32韌體開發技術手冊Ver2.0, 2002年.

    下載圖示 校內:2012-08-17公開
    校外:2012-08-17公開
    QR CODE