簡易檢索 / 詳目顯示

研究生: 黃全一
Huang, Chuan-I
論文名稱: 以有機金屬氣相磊晶法成長之氮化鋁鎵/氮化鎵以及氮化鎵/氮化銦鎵場效電晶體的製作與探討
Investigation and Fabrication of AlGaN/GaN and GaN/InGaN HFETs by Metalorganic Vapor Phase Epitaxy system
指導教授: 張守進
Chang, Shoou-Jinn
蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 91
中文關鍵詞: 異質結構場效電晶體氮化鎵
外文關鍵詞: HFETs, GaN
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們首先探討兩種不同的金屬作為歐姆接觸時對氮化鋁鎵/氮化鎵異質結構場效電晶體之結構特性的影響。當以鉻/鋁為歐姆接觸電極時,在700℃氮氣退火的環境下有最佳的特徵電阻值3.7*10-4Ω-cm2,此時元件在直流特性方面最高轉導(GM)為82.4mS/mm、最大電流(Idmax)為471mA/mm。而以鈦/鋁/鈦/金為歐姆接觸電極時,在800℃氮氣退火的環境下有最佳的特徵電阻值2*10-5Ω-cm2,元件在直流特性方面最高轉導(GM)為100.9mS/mm、最大電流(Idmax)為481mA/mm。由以上可知,當我們選擇有較低的特徵電阻值的金屬做電極時,對元件特性的確有很大的影響。在高頻部分我們以HP8150網路分析儀量得以鈦/鋁/鈦/金為歐姆接觸電極所做出的元件之截止頻率為1.32GHz及1.99GHz的最大共振頻率。
    另外,我們在有機金屬氣相磊晶法成長的氮化鎵基板上利用分子束磊晶法(MBE)成長出高品質的二維電子雲,其成長出的試片在室溫時的濃度及電子遷移率分別為1.77E+13cm-2和1010cm2/V-sec,此試片我們也做出元件並和完全以有機金屬氣相磊晶法成長之試片所做出的元件做比較。
    在第二部分我們探討由能帶彎曲及壓電效應所形成之氮化鎵/氮化銦鎵異質結構場效電晶體之元件特性,我們發現在摻雜鎂之氮化鎵絕緣層上成長一層薄的氮化鎵緩充層及減少氮化銦鎵厚度至(1000Å)可有效的提升氮化鎵/氮化銦鎵介面的二維電子雲品質,由原子力顯微鏡量測得到0.23nm的表面粗糙度,以及376cm2/V-sec、1.2E+13cm-2的二維電子雲遷移率和濃度即是最好的證明,此外,我們也由元件的特性發現,摻雜鎂之氮化鎵絕緣層的確可有效的降低源極端和汲極端之間的漏電流,但在低頻雜訊的表現上,因為摻雜鎂之氮化鎵絕緣層會對結構形成較多的缺陷,因此對通道內的電流傳輸及電子的遷移率會有較大的影響,也就有較大的雜訊產生。

    In this thesis, we first compare two different type ohmic contact metals on AlGaN/GaN heterostructure field effect transistors (HFETs) structure grown by metalorganic vapor phase epitaxy (MOVPE) system, and then discuss the device electrical characteristics .With Cr/Al for ohmic contact metals, the best specific contact resistivity we measured is 3.7*10-4Ω-cm2 annealed at 700℃ in N2 ambiance. In DC section, the maximal transconductance (GM) of device is 82.4mS/mm and the maximal drain current (Idmax) is 471mA/mm. For using Ti/Al/Ti/Au as ohmic contact metals, the best specific contact resistivity is 2*10-5Ω-cm2 annealed at 800℃in N2 ambiance. For DC measurement, the maximal transconductance and the maximal drain current (Idmax) are 100.9mS/mm and 481mA/mm. So, we know lower specific contact resistivity indeed has improvement on the device electrical characteristics. Beside, from measuring the HFETs structure with Ti/Al/Ti/Au as ohmic contact metals, we obtain the cut-off frequency fT=1.32GHz and maximum oscillation frequency fmax= 1.99 GHz by HP8150 network analyzer.
    We also get high 2DEG layers quality by using Ammonia-MBE system grown on MOVPE GaN template; the 2DEG sheet carrier density and hall nobility are 1.77E+13cm-2 and 1010cm2/V-sec at room temperature. We also compare devices electrical characteristics with devices grown totally on MOVPE system.
    In the second section, we study and fabrication of GaN/InGaN heterostructure field effect transistors caused by bend bending and piezoelectric effect. We find that grow a thin GaN buffer layer on GaN:Mg isolation layer and reduce InGaN layer thickness to 1000 Å can improve the GaN/InGaN 2DEG quality. The best evidences are 0.23nm surface roughness obtained from AFM technique and 376cm2/V-sec、1.2E+13cm-2 of hall mobility and sheet carrier density. Moreover, we also find that GaN:Mg isolation layer can lower leakage current from drain to source, but it provides more traps and defects in the structure and causes pronounced electrons and mobility fluctuation at channel layer, so higher noise power spectral density than structure without GaN:Mg isolation layer can be measured by Flicker noise measurement system.

    Contents Abstract (in Chinese) I Abstract (in English) III Contents V Table Captions VIII Figure Captions IX Chapter 1 Introduction 1-1 The background research on GaN and AlGaN/GaN heterostructure 1 1-2 The background research on GaN/InGaN heterostructure 2 1-3 Overview of This Dissertation 3 References 7 Chapter 2 Theory and Measurement Techniques 2-1 X-Ray Diffraction (XRD) System 9 2-2 SIMS (Secondary Ion Mass Spectroscopy) 10 2-3 Inductively coupled plasma reactive ion etching (ICP-RIE) 10 2-4 The investigation of 2-DEG measurement 12 2-5 Network analyzer system 15 2-6 Noise model of flicker noise 15 References 23 Chapter 3 Discussion the ohmic contact behavior on AlGaN/GaN HFETs structure 3-1 Introduction 24 3-2 Theory of the circular transfer length method (CTLM) measurement 25 3-3 Growth Conditions and Characteristics of AlGaN/GaN HFETs Structures by MOVPE system 27 3-4 Fabrication processes 28 3-5 Result and discussion 29 3-6 Summary 32 References 41 Chapter 4 Study of the fabrication and characteristics of AlGaN/GaN HFETs grown by MOVPE system 4-1 Introduction 43 4-2 polarization 44 4-3 AlGaN/GaN HFETs devices fabrication processes 47 4-4 Discussion of devices electrical characteristics by using different type ohmic contact metals 49 4-5 AlGaN/GaN 2DEG structure grown by ammonia-MBE on MOVPE GaN template 52 4-6 Low frequency noise on AlGaN/GaN 2DEG structure grown by ammonia-MBE techniques on MOVPE GaN template and totally grown by MOVPE system 55 References 73 Chapter 5 Study of the fabrication and characteristics of GaN/InGaN HFETs grown by MOVPE system 5-1 Introduction 75 5-2 Growth Conditions and Characteristics of GaN/InGaN HEMTs Structures by MOVPE system 75 5-3 Result and discussion 76 5-4 Study of GaN/In0.12Ga0.88N HFETs with Mg-doped GaN confinement layer 77 References 89 Chapter 6 Conclusion and future prospect 6-1 Conclusion 90 6-2 future prospect 91

    Reference Chapter 1
    [1] T. Lei, D. Moustakas, J. Graham, Y. He, and J. Berkowitz, J. Appl. Phys,
    vol.71, 4993 (1992).
    [2] P. C. Joh, J. J. Alwan, and J. G. Eden, Thin Solid Film. 218, 75(1992).
    [3] T. Sasaki and T. Matsuoka, J. Appl. Phys, vol.64, 4531 (1988).
    [4] P. J. Born and D. S. Robertson, J.Mater.Sci. 15, 3003 (1980).
    [5] T. Detchprohm, Hamano, K. Hiramatsu, and I. Akasaki, J. Crust. Growth. 128,
    384 (1993).
    [6] R. C. Powell, G. A. Tomasch, Y. W. Kim, J. A. Thornton, and J. E. Greene,
    Mater. Res. Soc. Symp. Proc. 162, 525 (1990).
    [7] T. Detchprohm, K.Hiramatsu, N. Sawaki, and I. Akasaki, J. Crust. Growth. 137,
    170 (1994).
    [8] V. Kumar, W. Lu, F. A. Khan, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. A.
    Khan and I. Adesida, “High performance 0.25μm gate-length AlGaN/GaN HEMTs
    on sapphire with transconductance of over 400mS/mm” Electron Letter 28th
    February 2002 vol.38, No.5.
    [9] H. Morkoc, “Nitride Semiconductors and Device”, 1999
    [10] S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and
    H. Kiyoku, Appl. Phys. Lett 70, 2753 (1997)
    [11] S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and
    H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl.
    Phys. Lett 72, 2014 (1998);73, 832 (1998)
    [12] Y. M. Hsin, Member, IEEE, H. T. Hsu, C. C. Chuo, and J. I. Chyi, Senior
    Member, IEEE “Device Characteristics of the GaN/InGaN-Doped Channel HFETs”
    IEEE Electron Device Letters, vol. 22, NO. 11, November 2001.

    Reference Chapter 2
    [1] L. H. Schwartz and J. B. Cohen, 2nd ed., (Springer-Verlag, Berlin, 1987).
    [2] I. Adessida, A. Mahajan, E. Andideh, M. A. Kahn, D. T. Olson, and J. N.
    Kuznia, Appl. Phys. Lett. 63, 2777 (1993).
    [3] S. J. Pearton, C. R. Abernathy, F. Ren, J. R. Lothian, J.Vac.Sci.Technol.A
    11, 1772 (1993).
    [4] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, Appl. Phys.
    Lett. 69, 1119 (1996).
    [5] F. N. Hooge, “1/f noise is no surface effect,” Phys. Lett. vol.29A, 139,
    1969.

    Reference Chapter 3
    [1] M. W. Fay, G. Moldovan, P. D. Brown, I. Harrison, J. C. Birbeck, B. T.
    Hughes, M. J. Uren, T. Martin “Structural and electrical characterization of
    Au/Ti/Al/Ti/AlGaN/GaN ohmic contacts” J.Appl.Phys, vol.92, number1, 1th July
    2002.
    [2] J. Chen, D. G. Ivey, J. Bardwell, Y. Liu, H. Tang, J. B. Weeb
    “Microstructural analysis of Ti/Al/Ti/Au ohmic contacts to n-AlGaN/GaN”
    American Vacuum Society 2002.
    [3] A. N. Bright, P. J. Thomas, M. Weyland, D. M. Tricker, C. J. Humphreys, R.
    Davies “Correlation of contact resistance with microstructure for
    Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy
    ” Journal Of Applied Physics vol.89, number6, 15th March 2001.
    [4] P. Ruterana, M. Albrecht, J. Neugebauer “Nitride Semiconductors Handbook on
    Materials and Devices” Chapter 10.
    [5] D. K. Schroder “Semiconductor Material and Device Characterization 2nd
    edition” Chapter 3.
    [6] W. Shockley, in A. Goetzberger and R. M. Scarlett, “Research and
    Investigation of Inverse Epitaxial UHF Power Transistors” Rep. No.
    AFAL-TDR-64-2-7, Air Force Avionics Lab, Wright Patter5son Air Force Base, OH,
    Sept. 1964.
    [7] G. K. Reeves, “Specific Contact Resistance Using a Circular Transmission
    Line Model ” Solid-State Electron. 23, pp.487-490, May 1980; A. J. Willis
    and A. P. Botha, Thin Solid films 146, 15 (1987).
    [8] S. S. Cohen and G. Sh. Gildenblat, VLSI Electronics, 13, Metal-Semiconductor
    Contacts and Devices (Academic Press, Orlando, FL, 1986) 115; M. Ahmad and B.
    M. Arora, Solid-State Electron. 35, 1441 (1992).
    [9] N. A. Papanicolaou, A. Edwards, M. V. Rao, J. Mittereder, W. T. Anderson,
    “Cr/Al and Cr/Al/Ni/Au ohmic contacts to n-type GaN” Journal of Applied
    Physic, vol.87, number1, 1th January, 2000.

    Reference Chapter 4
    [1] A. Ozgur, W. Kim, Z. Fan, A. Botchkarev, A. Salvador, S. N Mohammad, B.
    Sverdlov, and H. Morkoc, Electron. Lett. 31, 1389 (1995)
    [2] M. A. Khan, Q. Chen, M. S. Shur, B. T. MsDermott, J. A. Higgins, L. Burm, W.
    J. Schaff, and L. F. Eastman, IEEE Electron Device Lett. 17, 584 (1996)
    [3] S. C. Binari, J. M. Redwing, G. Kelner, and W. Kruppa, Electron. Lett. 33,
    242 (1997)
    [4] E. A. Caridi, T. Y. Chang, K. W. Goosen, and L. F. Eastman, Appl. Phys. Lett.
    56, 659 (1990)
    [5] W. Q. Chen and S. K. Hark, J. Appl. Phys. 77, 5747 (1995)
    [6] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J.
    Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and
    J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and
    piezoelectric polarization charges in N- and Ga-face AlGaN/GaN
    heterostructures” J. Appl. Phys. 85, 3222-3233 (1999).
    [7] P. Ruterana, M. Albrecht, J. Neugebauer “Nitride Semiconductors Handbook on
    Materials and Devices” Chapter 12.
    [8] W. Liu, “Fundamentals of III-V devices HBTs, MESFETs, and HFETs/HEMTs”
    Chapter 5.
    [9] H. Tang, J. B. Webb, J. A. Bardwell, S. Rolfe, and T. W. MacElwee,
    Solid-State Electron, vol.44, 2177, 2000.
    [10] M. Micovici, N. X. Nguyen, P. Janke, W. S. Wong, P. Hashimoto, L. M. McCray,
    and C. Nguyen, “ GaN/AlGaN high electron mobility transistor with fT of
    110GHz”, Electron. Lett., vol.36, 358-359, 2000.
    [11] S. C. Wei, 國立成功大學電機工程學系博士論文“Electrical analysis and
    low-frequency noise investigation AlGaN/GaN high electron mobility
    transistors” 2003.

    Reference Chapter 5
    [1] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur “Properties of advanced
    semiconductor materials” Chapter 3.
    [2] R. Singh, D. Doppalapudi, T. D. Moustakas, L. T. Romano “Phase separation in
    InGaN thick films and formation of InGaN/GaN double heterostructures in the
    entire alloy composition” Appl. Phys. Lett, vol.70, No.9, 3 March 1997.
    [3] C. C. Chuo, C. M. Lee, and J. I. Chyi “Interdiffusion of In and Ga in
    InGaN/GaN multiple quantum wells” Appl. Phys. Lett, Vol.78, No.3, 15 January
    2001.
    [4] Y. M. Hsin, Member, IEEE, H. T. Hsu, C. C. Chuo, and J. I. Chyi, Senior
    Member, IEEE “Device Characteristics of the GaN/InGaN-Doped Channel HFETs”
    IEEE Electron Device Letters, vol. 22, NO. 11, November 2001.
    [5] J. I. Pankove, T. D. Moustakas “Gallium Nitride (GaN) I” Semiconductors and
    semimetals, Vol. 57, pp.29-30.
    [6] C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A.
    El-Masry “Determination of the critical layer thickness in the InGaN/GaN
    heterostructures” Appl. Phys. Lett, Vol. 75, No. 18, 1 November, 1999.
    [7] S. C. Wei, 國立成功大學電機工程學系博士論文“Electrical analysis and
    low-frequency noise investigation AlGaN/GaN high electron mobility
    transistors” 2003.

    下載圖示 校內:立即公開
    校外:2004-07-07公開
    QR CODE