| 研究生: |
劉彥廷 Liu, Yen-Ting |
|---|---|
| 論文名稱: |
低功率高速類比數位轉換器 Low-Power High-Speed Analog-to-Digital Converters |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 低功率 、高速 、類比數位轉換器 |
| 外文關鍵詞: | analog-to-digital converter, low power, high speed |
| 相關次數: | 點閱:161 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在超寬頻的應用下,我們提出二個低功率高速類比數位轉換器的設計。第一個設計是一個五位元每秒十億次取樣快閃式類比數位轉換器,使用台積電 0.18 微米製程下線驗證。量測結果顯示在六億的取樣頻率下,有效位元數為四位元,而且消耗功率為 60 mW。第二個設計是一個六位元每秒十億次取樣類比數位轉換器,使用台積電 0.13 微米製程。我們使用二階式次範圍架構,而不是傳統連續時間型快閃式類比數位轉換器。除此之外,我們還使用偏移消除、管線運作和插補等技巧。在佈局後的模擬顯示當輸入頻率接近Nyquist rate時,都還有 5.2 個有效位元。差分非線性誤差和積分非線性誤差都小於 0.3 最小位元。 所消耗的功率為 62 mW,每一次資料轉換消耗 1.38 pJ。
For multi-band OFDM UWB, we propose two low-power high-speed analog-to-digital converters (ADCs). The first design is a 5-bit 1-Gsample/s flash ADC fabricated in TSMC 0.18-m 1P6M CMOS process. The measurement results show that the effective number of bits (ENOB) is 4 and power consumption is 60 mW with the sampling rate of 600 MHz. The second design is a 6-bit 1-Gsample/s ADC implemented in TSMC 0.13-m 1P8M CMOS process. Instead of continuous time flash ADC, we use two-step subranging structure. In addition, we employ offset cancellation, pipelining, and interpolation techniques. The post-layout simulation shows that ENOB is above 5.2 bits when the input frequency is up to Nyquist rate. The differential nonlinearity (DNL) and integral nonlinearity (INL) are smaller than 0.3 LSB (Least Significant Bit). The power consumption is 62 mW and figure-of-merit (FOM) 1.38 pJ/conversion-step.
[1] “FCC notice of proposed rule making, revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Federal Communications Commission, Washington, DC, ET-Docket 98-153.
[2] S. A. Ghorashi, B. Allen, M. Ghavami, and A. H. Aghvami, “An overview of MB-UWB OFDM,” in Proc. of IEE Seminar on Ultra Wideband Commun. Technol. and Syst. Design, July 2004, pp. 107-110.
[3] (2005, Mar.) Ultra-Wideband (UWB) Technology: Enabling high-speed wireless personal area networks. Intel Corp. [Online] Available: http://www.intel.com/technology/comms/uwb/download/Ultra-Wideband.pdf.
[4] R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag., vol. 43, no. 2, pp. 80-87, Feb. 2005.
[5] K. Kattmann and J. Barrow, “A technique for reducing differential non-linearity errors in flash A/D converters,” in ISSCC Dig. Tech. Papers, Feb. 1991, pp. 170-171.
[6] K. Bult and A. Buchwald, “An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2,” IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 1887-1895, Dec. 1997.
[7] K. Sushihara, H. Kimura, Y. Okamoto, K. Nishimura, and A. Matsuzawa, “A 6b 800Msample/s CMOS A/D converter,” in ISSCC Dig. Tech. Papers, Feb. 2000, pp. 428-429.
[8] G. Geelen, “A 6b 1.1Gsample/s CMOS A/D converter,” in ISSCC Dig. Tech. Papers, Feb. 2001, pp. 128-129.
[9] H. Pan, M. Segami, M. Choi, J. Cao, and A. A. Abidi, “A 3.3-V 12-b 50-MS/s A/D converter in 0.6-mm CMOS with over 80-dB SFDR,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1769-1780, Dec. 2000.
[10] M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D converter in 0.35-mm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1847-1858, Dec. 2001.
[11] P. C. S. Scholtens and M. Vertregt, “A 6-b 1.6-Gsample/s flash ADC in 0.18-mm CMOS using averaging termination,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599-1609, Dec. 2002.
[12] R.. C. Taft, C. A. Menkus, M. R. Tursi, O. Hidri, and V. Pons, “A 1.8-V 1.6-GSample/s 8-b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2107-2115, Dec. 2004.
[13] X. Jiang and M.-C. F. Chang, “A 1-GHz signal bandwidth 6-bit CMOS ADC with power-efficient averaging,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 532-535, Feb. 2005.
[14] A. G. W. Venes and R. J. van de Plassche, “An 80-MHz, 80-mW, 8-b CMOS folding A/D converter with distributed track-and-hold preprocessing,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1846-1853, Dec. 1996.
[15] J. Doernberg, P. R. Gray, and D. A. Hodges, “A 10-bit 5-Msample/s CMOS two-step flash ADC,” IEEE J. Solid-State Circuits, vol. 24, no. 2, pp. 241-249, Apr. 1989.
[16] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[17] M. Gustavsson, J. J. Wikner, and N. N. Tan, CMOS Data Converters for Communications. Boston, MA: Kluwer Academic, 2000.
[18] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter analysis of high speed sampling systems,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 220-224, Feb. 1990.
[19] N. D. Dalt, M. Harteneck, C. Sandner, and A. Wiesbauer, “On the Jitter requirements of the sampling clock for analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 40, no. 9, pp. 1354-1360, Sept. 2002.
[20] R. van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd Edition. Boston, MA: Kluwer Academic, 2003.
[21] R. J. van de Plassche and P. Baltus, “An 8-bit 100-MHz full-Nyquist analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1334-1344, Dec. 1988.
[22] M. J. M. Pelgrom, A. C. J. v. Rens, M. Vertregt, and M. B. Dijkstra, “An 25-Ms/s 8-bit CMOS A/D converter for embedded application,” IEEE J. Solid-State Circuits, vol. 29, no. 8, pp. 879-886, Aug. 1994.
[23] P. M. Figueiredo and J. C. Vital, “Averaging technique in flash analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 2, pp. 233-253, Feb. 2004.
[24] P. M. Figueiredo and J. C. Vital, “Termination of averaging networks in flash ADCs,” in Proc. Int. Symp. Circuits and Syst., May 2004, vol. 1, pp. 121-124.
[25] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp.1433-1440, Oct. 1989.
[26] B. Razavi, Principles of Data Conversion System Design. IEEE Press, 1995.
[27] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[28] J.-T. Wu and B. A. Wooley, “A 100-MHz pipelined CMOS comparator,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1379-1385, Dec. 1988.
[29] H. Kimura, A. Matsuzawa, T. Nakamura, and S. Sawada, “A 10-b 300-MHz interpolated-parallel A/D converter,” IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 438-446, Apr. 1993.
[30] H.-S. Lee, “A 12-b 600 ks/s digitally self-calibrated pipelined algorithmic ADC,” IEEE J. Solid-State Circuits, vol. 29, no. 4, pp. 509-515, Apr. 1994.
[31] P. M. Figueiredo and J. C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[32] J. G. Peterson, “A monolithic video A/D converter,” IEEE J. Solid-State Circuits, vol. SC-14, no. 6, pp. 932-937, Dec. 1979.
[33] A. Yukawa, “A CMOS 8-bit high-speed A/D converter IC,” IEEE J. Solid-State Circuits, vol. SC-20, no. 3, pp. 775-779, June 1985.
[34] Y. Akazawa, A. Iwata, T. Wakimoto, T. Kamato, H. Nakamura, and H. Ikawa, “A 400MSPS 8b flash AD conversion LSI,” in ISSCC Dig. Tech. Papers, Feb. 1987, pp. 98-99.
[35] T. Wakimoto, Y. Akazawa, and S. Konaka, “Si bipolar 2-GHz 6-bit flash A/D conversion LSI,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1345-1350, Dec. 1988.
[36] C. W. Mangelsdorf, “A 400-MHz input converter with error correction,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 184-191, Feb. 1990.
[37] C. L. Portmann and T. H. Y. Meng, “Power-efficient metastability error reduction in CMOS flash A/D converters,” IEEE J. Solid-State Circuits, vol. 31, no. 8, pp. 1132-1140, Aug. 1996.
[38] S. Tsukamoto, W. G. Schofield, and T. Endo, “A CMOS 6-b, 400-MSample/s ADC with error correction,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1939-1947, Dec. 1998.
[39] D. G. Knierim, “Thermometer-to-adjacent binary encoder,” U.S. Patent no. 4733220, Mar. 22, 1988.
[40] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W. Dobberpuhl, P. M. Donahue, J. Eno, W. Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin, L. Madden, D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stehpany, and S. C. Thierauf, “A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1703-1714, Nov. 1996.
[41] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design Perspective, 2nd Edition. Prentice-Hall, 2003.
[42] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier, ” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004.
[43] B. Nikolić, V. G. Oklobdzija, V. Stojanović, W. Jia, J. K. Chiu, and M. M. Leung, “Improved sense-amplifier-based flip-flop: design and measurements,” IEEE J. Solid-State Circuits, vol. 35, pp. 876-884, June 2000.
[44] G. Gerosa, S. Gary, C. Dietz, D. Pham, K. Hoover, J. Alvarez, H. Sanchez, P. Ippolito, T. Ngo, S. Litch, J. Eno, J. Golab, N. Vanderschaaf, and J. Kahle, “A 2.2 W, 80 MHz superscalar RISC microprocessor,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1440-1454, Dec. 1994.
[45] V. Stojanovic and V. G. Oklobdzija, “Comparative analysis of master-slave latches and flip-flops for high-performance and low-power,” IEEE J. Solid-State Circuits, vol. 34, no. 4, pp. 536-548, Apr. 1999.
[46] D. Marković, B. Nikolić, and R. W. Brodersen, “Analysis and design of low-energy flip-flops,” in Proc. Int. Symp. Low Power Electronics and Design, 1996, pp. 52-55.
[47] B. P. Brandt and J. Lutsky, “A 75-mW, 10-b, 20-MSPS CMOS subranging ADC with 9.5 effective bits at Nyquist,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1788-1795, Dec. 1999.
[48] H. van der Ploeg, G. Hoogzaad, H. A. H. Termeer, M. Vertregt, and R. L. J. Roovers, “A 2.5-V 12-b 54-Msample/s 0.25-mm CMOS ADC in 1-mm2 with mixed-signal chopping and calibration,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1859-1867, Dec. 2001.
[49] J. Mulder, C. M. Ward, C.-H. Lin, D. Kruse, J. R. Westra, M. L. Lugthart, E. Arslan, R. van de Plassche, K. Bult, and F. M. L. van der Goes, “A 21-mW 8-b 125-MSample/s ADC in 0.09-mm2 0.13-mm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2116-2125, Dec. 2004.
[50] P. Scholtens and M. Vertregt, “A 6b 1.6 GSamples/s flash ADC in 0.18mm CMOS using averaging termination,” in ISSCC Dig. Tech. Papers, Feb. 2002, pp. 168-169.
[51] X. Jiang, Z. Wang, and M. F. Chang, “A 2GS/s 6b ADC in 0.18mm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2003, pp. 322-323.
[52] C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kuttner, “A 6bit, 1.2GSps low-power flash-ADC in 0.13mm digital CMOS,” in Proc. 30th European Solid-State Circuits Conf., Sept. 2004, pp. 339-342.
[53] P. M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi, K. Tanabe, and J. Vital, “A 90nm CMOS 1.2V 6b 1GS/s two-step subranging ADC,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 568-569.