| 研究生: |
許顥屏 Hsu, Hao-Ping |
|---|---|
| 論文名稱: |
整合SAC演算法及可改變質心高度LIPM於雙足機器人上階梯步態之設計與實踐 Design and Implementation of Stair-Climbing Gait Pattern Generator for Biped Robot by Integrating SAC with Altered Height CoM LIPM |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | SAC深度加強式學習 、線性倒單擺模型 、質心高度 、雙足機器人 |
| 外文關鍵詞: | SAC Deep Reinforcement Learning, Linear Inverted Pendulum Model, CoM Height, Biped Robot |
| 相關次數: | 點閱:148 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1]“Atlas Boston Dynamics.” https://www.bostondynamics.com/atlas (accessed Jun. 16, 2021).
[2]“Cassie - ROBOTS: Your guide to the world of robotics. https://robots.ieee.org/robots/cassie/ (accessed Jun. 16, 2021).
[3]“HRP-4 - ROBOTS: Your guide to the world of robotics.” https://robots.ieee.org/robots/hrp4/ (accessed Jun. 16, 2021).
[4]“ASIMO by Honda | The World’s most advanced humanoid robot.” https://asimo.honda.com/ (accessed Jun. 16, 2021).
[5] C. Fu and K. Chen, “Gait synthesis and sensory control of stair climbing for a humanoid robot,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2111–2120, May 2008, doi: 10.1109/TIE.2008.921205.
[6] C. L. Shih, “Ascending and descending stairs for a biped robot,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans., vol. 29, no. 3, pp. 255–268, 1999, doi: 10.1109/3468.759271.
[7] T.-H. S.Li, Y. T. Su, C. H. Kuo, C. Y. Chen, C. L. Hsu, and M. F. Lu, “Stair-climbing control of humanoid robot using force and accelerometer sensors,” in Proceedings of the SICE Annual Conference, 2007, pp. 2115–2120, doi: 10.1109/SICE.2007.4421336.
[8] S. Osswald, A. Gorog, A. Hornung, and M. Bennewitz, “Autonomous climbing of spiral staircases with humanoids,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Dec. 2011, pp. 4844–4849, doi: 10.1109/iros.2011.6094533.
[9] Z. Yu, X. Chen, Q. Huang, “Gait planning of omnidirectional walk on inclined ground for biped robots,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 46, no. 7, pp. 888–897, July 2016, doi: 10.1109/TSMC.2015.2487240.
[10] B. J. Lee, D. Stonier, Y. D. Kim, J. K. Yoo, and J. H. Kim, “Modifiable walking pattern of a humanoid robot by using allowable ZMP variation,” IEEE Trans. Robot., vol. 24, no. 4, pp. 917–925, Aug. 2008, doi: 10.1109/TRO.2008.926859.
[11] T. Sato, S. Sakaino, E. Ohashi, and K. Ohnishi, “Walking trajectory planning on stairs using virtual slope for biped robots,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1385–1396, Apr. 2011, doi: 10.1109/TIE.2010.2050753.
[12] P. Sardain and G. Bessonnet, “Zero moment point - measurements from a human walker wearing robot feet as shoes,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans., vol. 34, no. 5, pp. 638–648, Sep.2004, doi: 10.1109/TSMCA.2004.832833.
[13] T.-H. S. Li, Y. T. Su, S. H. Liu, J. J. Hu, and C. C. Chen, “Dynamic balance control for biped robot walking using sensor fusion, Kalman filter, and fuzzy logic,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4394–4408, Nov. 2012, doi: 10.1109/TIE.2011.2175671.
[14] K. Hu, C. Ott, and D. Lee, “Learning and generalization of compensative zero-moment point trajectory for biped walking,” IEEE Trans. Robot., vol. 32, no. 3, pp. 717–725, Jun. 2016, doi: 10.1109/TRO.2016.2553677.
[15] Y. D. Hong and B. Lee, “Real-time feasible footstep planning for bipedal robots in three-dimensional environments using particle swarm optimization,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 1, pp. 429–437, Feb. 2020, doi: 10.1109/TMECH.2019.2955701.
[16] S. Caron, A. Kheddar, and O. Tempier, “Stair climbing stabilization of the HRP-4 humanoid robot using whole-body admittance control,” in Proceedings of the IEEE Inter. Conf. on Robotics and Automation, May 2019, vol. 2019-May, pp. 277–283, doi: 10.1109/ICRA.2019.8794348.
[17] T.-H. S. Li, Y. F. Ho, P. H. Kuo, Y. T. Ye, and L. F. Wu, “Natural walking reference generation based on double-link LIPM gait planning algorithm,” IEEE Access, vol. 5, pp. 2459–2469, 2017, doi: 10.1109/ACCESS.2017.2669209.
[18] Y. D. Hong, B. J. Lee, and J. H. Kim, “Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 4, pp. 783–789, Aug. 2011, doi: 10.1109/TMECH.2010.2089530.
[19] T. Komura, A. Nagano, H. Leung, and Y. Shinagawa, “Simulating pathological gait using the enhanced linear inverted pendulum model,” IEEE Trans. Biomed. Eng., vol. 52, no. 9, pp. 1502–1513, Sep. 2005, doi: 10.1109/TBME.2005.851530.
[20] K. S. Hwang, J. L. Lin, and K. H. Yeh, “Learning to adjust and refine gait patterns for a biped robot,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 45, no. 12, pp. 1481–1490, Dec.2015, doi: 10.1109/TSMC.2015.2418321.
[21] T.-H. S. Li, P.-H. Kuo, L.-H. Chen, C.-C. Hung, P.-C. Luan, H.-P. Hsu, C.-H. Chang, Y.-T. Hsieh, and W.-H. Lin, “Fuzzy double deep Q-network-based gait pattern controller for humanoid robots,” IEEE Trans. Fuzzy Syst., pp. 1–1, Oct. 2020, doi: 10.1109/tfuzz.2020.3033141.
[22] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-learning,” Sep.2015, Accessed: Jun.16, 2021. [Online]. Available: http://arxiv.org/abs/1509.06461.
[23] J. Schulman, F. Wolski, P. Dhariwal, A.R adford, and O. Klimov, “Proximal policy optimization algorithms,” Jul.2017, Accessed: Jun.16, 2021. [Online]. Available: http://arxiv.org/abs/1707.06347.
[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor,” Jan. 2018, Accessed: Jun.14, 2021. [Online]. Available: http://arxiv.org/abs/1801.01290.
[25] “ROBOTIS.” https://www.robotis.com/#firstPage (accessed Jun. 19, 2021).
[26] Intel, “RealSense depth camera D435i.” .
[27] K. Erbatur and O. Kurt, “Natural ZMP trajectories for biped robot reference generation,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 835–845, 2009, doi: 10.1109/TIE.2008.2005150.
[28] M. H. P. Dekker, “Zero-moment point method for stable biped walking,” Internsh. Rep. DCT Nr, no. July, p. 62, 2009, doi: 10.1109/IROS.2011.6048045.
[29] Q. Huang, S. Sugano, and K. Tanie, “Stability compensation of a mobile manipulator by manipulator motion: feasibility and planning,” in Proceedings of the 1997 IEEE/RSJ Int. Conf. Intelligent Robot and Syst. Innovative Robotics for Real-World Applications. IROS ’97, 2002, pp. 1285–1292, doi: 10.1109/iros.1997.656417.
[30] J. P. Ferreira, M. M. Crisostomo, A. P. Coimbra, and B. Ribeiro, “Control of a biped robot with support vector regression in sagittal plane,” IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 3167–3176, 2009, doi: 10.1109/TIM.2009.2017148.
[31] D. J. Braun, J. E. Mitchell, and M. Goldfarb, “Actuated dynamic walking in a seven-link biped robot,” IEEE/ASME Trans. Mechatronics, vol. 17, no. 1, pp. 147–156, 2012, doi: 10.1109/TMECH.2010.2090891.
[32] P.S ardain and G. Bessonnet, “Forces acting on a biped robot. Center of pressure - Zero moment point,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans., vol. 34, no. 5, pp. 630–637, 2004, doi: 10.1109/TSMCA.2004.832811.
[33] C. Liu, D. Wang, and Q. Chen, “Central pattern generator inspired control for adaptive walking of biped robots,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans, vol. 43, no. 5, pp. 1206–1215, 2013, doi: 10.1109/TSMC.2012.2235426.
[34] P. H. Kuo, Y. F. Ho, K. F. Lee, L. H. Tai, and T. H. S. Li, “Development of humanoid robot simulator for gait learning by using particle swarm optimization,” in Proceedings of the 2013 IEEE Int. Conf. Syst. Man, Cybern. SMC 2013, pp. 2683–2688, 2013, doi: 10.1109/SMC.2013.457.
[35] M. Azarkaman, M. Aghaabbasloo, and M. E. Salehi, “Evaluating GA and -PSO evolutionary algorithms for humanoid walk pattern planning,” in Proceedings of the 2014 ICEE Int. Conf. Electr, ICEE 2014, pp. 868–873, doi: 10.1109/IranianCEE.2014.6999658.
[36] Y. D. Hong, C. S. Park, and J. H.K im, “Stable bipedal walking with a vertical center-of-mass motion by an evolutionary optimized central pattern generator,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2346–2355, 2014, doi: 10.1109/TIE.2013.2267691.
[37] T. P. Lillicrap, J. J. Hunt, A. Pritzel, “Continuous control with deep reinforcement learning,” Sep.2015, Accessed: Jun.16, 2021. [Online]. Available: http://arxiv.org/abs/1509.02971.
[38] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3–4, pp. 279–292, 1992, doi: 10.1007/BF00992698.
[39] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep energy-based policies,” Feb.2017, Accessed: Jun. 16, 2021. [Online]. Available: http://arxiv.org/abs/1702.08165.
[40] S. H. Hyon, “Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces,” IEEE Trans. Robot., vol. 25, no. 1, pp. 171–178, 2009, doi: 10.1109/TRO.2008.2006870.
校內:2026-08-10公開