| 研究生: |
林天俊 Lin, Tian-Jiun |
|---|---|
| 論文名稱: |
模糊積分型式滑動控制器應用於壓電致動平台之研究 A Study on a Piezo Actuated Motion Stage Using Fuzzy Integral Sliding Mode Controller |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 壓電致動器 、模糊積分型滑動控制器 、磁滯效應 |
| 外文關鍵詞: | Piezoelectric Actuator, Fuzzy Integral Sliding-Mode controller, Hysteresis |
| 相關次數: | 點閱:96 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電致動器(Piezoelectric actuator,簡稱PEA)擁有高精度、質量輕、響應快、無背隙作用的優點,所以適用於精密定位。本論文主要之研究目標為壓電致動器的控制方法,實現一高精度、暫態響應快且穩定之壓電致動定位平台。然而壓電致動器具有高度非線性磁滯效應(Hysteresis),另一方面滑動控制器(Sliding Mode Controller,簡稱SMC)對於非線性元件或具有高擾動力的受控體擁有強健性,因此本論文發展以滑動控制為基礎理論的模糊積分型滑動控制器(Fuzzy Integral Sliding Mode Controller,簡稱FISMC)。藉由在切換函數中加入積分器改善一般使用飽和層的滑動控制器效能不佳的情形;並使用模糊控制器增加控制系統的強健性。由步階定位與光纖對位之實驗,結果顯示FISMC具有迅速、超越量小的定位效果。另外本論文透過循跡控制實驗測試FISMC的控制精準度。
Piezoelectric actuators are suitable for accurate positioning due to their high precision, light weight, fast response, and backlash-freeness. Since piezoelectric actuators possess high nonlinear hysteresis, the related control issues are investigated, and the control strategy using a fuzzy integral sliding-mode controller (FISMC) is established. By adding an integrator to the switching function, we can overcome the performance deficiency caused by the use of the saturation layer in conventional sliding-mode controller. In additions, the use of the fuzzy controller makes the control system much more robust to hysteresis effect and external disturbances. Finally, from the experimental result of step positioning and optical fiber alignmentshow that FISMC can achieve fast and small-overshoot. Moreover, the control accuracy of the FISMC can also be evaluated from the experiment of contour-tracking control.
[1] C. J. Lin and S. R. Yang, “Modeling of a Piezo-Actuator Position Stage Based on a Hysteresis Observer,” Asian Journal of Control, vol. 7, no. 1, pp. 73-80, Mar. 2005.
[2] P. N. Sreeram, G. Salvady, and N. G. Naganatham, “Hysteresis Prediction for a Piezoceramic Material System, ” in Proceedings of the 1993 ASME Winter Annual Meeting New Orlearns, New Orlearns, La, USA, ASME Aerospace Division, vol. 35, 1993, pp.35-42.
[3] P. Ge and M. Jouaneh, “Tracking Control of a Piezoceramic Actuator,” IEEE Transactions on Control System Technology, vol. 4, no. 3, pp. 209-216, 1996.
[4] Y. Yu, N. Naganathan, and R. Dukkipati, “Preisach Modeling of Hysteresis for Piezoceramic Actuator System,” Mechanism and Machine Theory, vol. 37, no. 1, pp. 49-59, 2002.
[5] G. Song, J. Zhao, X. Zhou, and J. Alexis De Abreu-Garcia, “Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model,” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 2, pp. 198-209, 2005.
[6] 李傑仁, 具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用 , 碩士論文, 國立成功大學航太工程學系, 2003.
[7] G. Michael and C. Nikola, “Modeling Piezoelectric Stack Actuator for Control of Micromanipulation,” IEEE Control System Magazine, pp. 69-79, 1997.
[8] F. Ikhouane and J. Rodellar, “On the Hysteretic Bouc–Wen Model,” Nonlinear Dynamics vol. 42, pp. 63-78, 2005.
[9] 楊森任, 壓電致動平台之精密定位控制, 碩士論文,大葉大學機械工程學系,2004。
[10] 黃恆庭,壓電致動器磁滯模型之觀測器, 碩士論文,逢甲大學自動控制工程學系,2001。
[11] M. Y. Sung and S. J. Huang, “Fuzzy Logic Motion Control of a Piezoelectrically Actuated Table,” in Proceeding of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 218, no. 5, 2004, pp. 381-397.
[12] M. Sharma, S.P. Singh, and B.L. Sachdeva, “Fuzzy logic based active vibration control of beams using piezoelectric patches,” in Proceeding. of SPIE - The International Society for Optical Engineering, vol. 5062, no. 2, pp. 538-544, 2002.
[13] M. Sasaki, M. Kawafuku, T. Katsuno, and F. Fijisawa, “Neural Network for Trajectory Tracking Control of a Flexible Micro-Manipulator,” in Proceedings of IEEE International Conference on Systems, Man, and Cybernetic , 1996, pp. 648-654.
[14] X. Tan and J. S. Baras, “Adaptive identification and control of hysteresis in smart materials,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 827-839, 2005.
[15] C. J. Li, H. S. M. Beigi, S. Li, and J. Liang, “Nonlinear piezo-actuator control by learning self tuning regulator,” Journal of Dynamic Systems, Measurement, and Control, vol. 115, pp. 720–723, 1993.
[16] P. K. Huang, P. H. Shieh, F. J. Lin, and H. J. Shie, “Sliding-mode control for a two-dimensional piezo-positioning stage,” Control Theory & Applications, IET, vol. 1, pp. 1104-1113, 2007.
[17] 劉向東、王偉, “一類遲滯模型的動態滑模跟蹤控制器設計,” 控制與決策,22卷8期,2007。
[18] 李柏均, 基於摩擦遲滯模型之順滑模態控制應用於多軸壓電奈米定位平台, 碩士論文,國立台灣大學機械工程系, 2008。
[19] 廖睿杰, DSP-Based長行程氣壓壓電高精密定位伺服系統之設計與研究, 碩士論文,國立台灣科技大學自動化及控制研究所,2004。
[20] 顧孝鈞, 壓電微致動器之製作與量測, 碩士論文,大葉大學機械工程系,2003。
[21] S. Devasia, E. Eleftheriou, and S. O. Reza Moheimani, “A Survey of Control Issues in Nanopositioning”, IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 802-823, 2007.
[22] 林政緯, 基於視覺之即時光纖對位研究, 碩士論文,國立成功大學電機工程學系,2006。
[23] 國立清華大學動力機械工程學系精密傳動實驗室,『壓電致動器介紹,』 http://www.ptlab.pme.nthu.edu.tw/class/壓電致動器介紹.pdf 。
[24] 張福學、王麗坤, 現代壓電學, 科學出版社,2001-2002。
[25] P. Ge, and M. Jouaneh, “Modeling Hysteresis in Piezoceramic Actuators,” Precision Engineering, pp. 211-221, vol. 17, no. 3, 1995.
[26] 邱志豪, 基於視覺回授與多取樣頻率控制之光纖對位研究, 碩士論文,國立成功大學電機工程學系,2007。
[27] C. Edwards, and S. K. Spurgeon, Sliding mode control: theory and applications, Taylor & Francis, 1998.
[28] W. Perruquetti, and J. P. Barbot, Sliding mode control in engineering, M. Dekker, 2002.
[29] T. C. Manjunath, “Design of Moving Sliding Surfaces in A Variable Structure Plant & Chattering Phenomena,” International Journal of Electronics, Circuits and Systems, vol. 1, no. 3, pp. 069- 076, 2006.
[30] J. Y. Hung, W. Gao, and J. C. Hung, “Variable Structure Control: A Survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
[31] 劉金琨, 滑模變結構控制MATLAB仿真, 清華大學出版社,2006。
[32] R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy Control , Springer, 1996.
[33] C. Y. Yen, F. L. Wen1, and S. J. Chiang, “Positioning Control of a Novel Thin-Disc Ultrasonic Motor using Fuzzy Sliding-Mode Control,” Journal of Aeronautics, Astronautics and Aviation, Series A, vol. 38, no. 1, pp. 069 - 076, 2006.
[34] Z. Kovacic, and S. Bogdan, Fuzzy controller design: theory and applications, CRC/Taylor & Francis, 2006.
[35] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-353, 1965.
[36] E. H. Mamdani, “Application of Fuzzy Algorithms for Control a Simple Dynamic Plant,” in Proceeding of the Institution of Electrical Engineers, vol. 121, no. 12, pp. 1585-1588, 1974.
[37] 孫宗瀛、楊英魁, Fuzzy控制理論、實作與應用, 全華科技圖書股份有限公司,1999。
[38] 李允中、王小璠、蘇木春, 模糊理論及其應用, 全華科技圖書股份有限公司,2003。
[39] C. R. Witham, M. W. Beranek, B. R. Carlisle, E. Y. Chan, and D. G. Koshinz, “Fiber-Optic Pigtail Assembly and Attachment Alignment Shift Using a Low-Cost Robotic Platform,” in Proceeding of the IEEE Electronic Components and Technology Conference., 2000, pp. 21-25.
[40] S. H. Kim, and B. K. Kim, “Analysis on Time-Delay of Commercial Off-The-Shelf Vision System considering Motion-Blur,” in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, 2001, pp. 2080-2085.