簡易檢索 / 詳目顯示

研究生: 蔡潔忞
Tsai, Benjamin
論文名稱: 波浪引致砂質海床中孔隙水壓變化
Wave-Induced Pore Pressure Changes in Sandy Seabed
指導教授: 郭玉樹
Kuo, Yu-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 波浪孔隙水壓砂質海床體應變
外文關鍵詞: waves, pore pressure, sandy seabed, volumetric strain
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於動態海洋環境施加於海床及構造物之反覆作用力會造成海床之孔隙水壓增加,孔隙水壓之增加會造成有效應力降低,進而降低海床土壤剪力強度,導致基礎承載力下降,甚至造成海床液化。為避免剪力強度不足之狀況發生,評估孔隙水壓之累積量有其必要性。
    孔隙水壓依其激發行為分作振盪孔隙水壓與殘留孔隙水壓,本研究針對殘留孔隙水壓,以數學模式描述透水海床土壤;考量土壤受反覆作用力下之永久塑性變形行為,引入土壤體應變模型至控制方程式中,再以符合現地狀況之邊界條件與初始條件進行求解後,求得波浪引致海床孔隙水壓隨時間之累積量。
    本研究開發之孔隙水壓計算模式需要七個參數以進行計算,分別為滲透係數、孔隙率、流體單位重、流體壓縮性、第一次體應變、體應變冪常數及作用週期。其中第一次體應變及體應變冪常數需進行排水條件下之動態三軸試驗以求得,其餘五個參數則以土壤力學之基本物性試驗求得。本研究亦對模式中使用之七個參數進行模式參數敏感度分析,釐清本模式所使用之各參數變化對於孔隙水壓之影響。
    本研究經由不排水反覆動態三軸試驗結果進行模式之驗證,驗證結果相當良好。本研究同時模擬室內造波渠道試驗,模擬結果亦相當符合,顯示出本模式於實際波浪環境下之適用性。利用本研究開發之模式可進行暴風條件下之海床累積孔隙水壓估算,進而評估海床之穩定性,以供海工結構物之設計參考。

    In the marine environment, wave force which continually acts on seabed will trigger pore pressure buildup in the seabed. The rising of pore pressure will decrease the effective stress, and it will cause the bearing capacity of foundation to decrease. This study develops a mathematical model to describe one-dimensional wave-induced seabed pore pressure accumulated problem. The model takes account of permanent plastic strain causing by wave-induced cycling loading, so that the residual pore pressure can be evaluated. Seven parameters have been used in this model, including coefficient of permeability, porosity, unit weight of fluid, compressibility of fluid, volumetric strain after the first cycle, power coefficient of volumetric strain, and period of loading cycle; parameter study has been done in this study. The model is validated by dynamic triaxial test data, and shows well adaption; the simulated results are compared with wave flume experimental data, and good agreement between this model and experiment is obtained.

    摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 圖目錄 xi 表目錄 xii 符號 xiii 第一章 緒論 1 1-1 研究背景 1 1-2 研究方法 1 第二章 波浪引致海床中孔隙水壓變化 3 2-1 波浪引致海床中孔隙水壓變化之機制 3 2-2 孔隙水壓變化之影響 4 2-3 現有分析方法 6 2-3-1 振盪孔隙水壓 6 2-3-2 殘留孔隙水壓 7 第三章 孔隙水壓控制方程式之建立 9 3-1 質量守恆 9 3-2 達西定律 13 3-3 控制方程式之源項 14 第四章 波浪對海床土壤中孔隙水壓之影響 15 4-1 波浪對海床土壤之應力 15 4-2 海床土壤之應變 18 4-3 殘留超額孔隙水壓之求解 19 4-3-1 控制方程式 19 4-3-2 邊界條件及初始條件 19 4-3-3 通解之推導 20 4-3-4 排水條件之影響 21 第五章 模式參數敏感性分析 22 5-1 孔隙介質性質 22 5-1-1 滲透係數 22 5-1-2 孔隙率 24 5-2 孔隙流體性質 25 5-2-1 流體單位重 25 5-2-2 流體壓縮性 27 5-3 土體體積應變 29 5-3-1 第一次體應變 29 5-3-2 體應變冪常數 31 5-3-3 作用週期 33 第六章 模式驗證與模擬 35 6-1 土壤元素受反覆應力下之超額孔隙水壓累積量模擬 35 6-1-1 體應變擬合 35 6-1-2 超額孔隙水壓之模擬 38 6-2 造波渠道試驗模擬 40 6-2-1 Sumer et al. (2012) 之實驗配置 40 6-2-2 模擬結果 42 第七章 結論與建議 46 7-1 結論 46 7-2 建議 48 參考文獻 49 附錄A 超額孔隙水壓推導過程 A-1 附錄B 不排水條件下之超額孔隙水壓推導過程 B-1

    Biot, M. A. (1941). “General Theory of Three-Dimensional Consolidation.” Journal of Applied Physics, 12(2), 155-164.
    Chang, S. C., Chien, L. K., Lin, J. G., and Chiu, Y. F. (2007). “An Experimental Study on Progressive Wave-Induced Stresses Duration in Seabed Soil.” Journal of Marine Science and Technology-Taiwan, 15(2), 129-140.
    Cheng, L., Sumer, B. M., and Fredsøe, J. (2001). “Solutions of Pore Pressure Build up due to Progressive Waves.” International Journal for Numerical and Analytical Methods in Geomechanics, 25(9), 885-907.
    Darcy, H. (1856). Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris.
    Das, B. M. (2010). Principles of Geotechnical Engineering - SI Version, Cengage Learning, Stamford, CT, USA.
    De Alba, P., Chan, C. K., and Seed, H. B. (1975). “Determination of Soil Liquefaction Characteristics by Large-scale Laboratory Tests.” Earthquake Engineering Research Center, Berkeley, California.
    Hsu, J. R. C., and Jeng, D.-S. (1994). “Wave-Induced Soil Response in an Unsaturated Anisotropic Seabed of Finite Thickness.” International Journal for Numerical and Analytical Methods in Geomechanics, 18(11), 785-807.
    Hsu, J. R. C., Jeng, D.-S., and Tsai, C. P. (1993). “Short-Crested Wave-Induced Soil Response in a Porous Seabed of Infinite Thickness.” International Journal for Numerical and Analytical Methods in Geomechanics, 17(8), 553-576.
    Huurman, M. (1996). “Development of Traffic Induced Permanent Strain in Concrete Block Pavements.” Heron, 41(1), 29-52.
    Ishihara, K., and Towhata, I. (1983). “Sand Response to Cyclic Rotation of Principal Stress Directions as Induced by Wave Loads.” Soils and Foundations, 23(4), 11-26.
    Jaky, J. (1944). “The Coefficient of Earth Pressure at Rest.” Journal of the Society of Hungarian Architects and Engineers, 7, 355-358.
    Jeng, D.-S. (2013). Porous Models for Wave-seabed Interactions, Springer Berlin Heidelberg.
    Jeng, D.-S., Seymour, B. R., and Li, J. (2007). “A New Approximation for Pore Pressure Accumulation in Marine Sediment due to Water Waves.” International Journal for Numerical and Analytical Methods in Geomechanics, 31(1), 53-69.
    Kuo, Y.-S. (2008). “On the Behavior of Large-diameter Piles under Cyclic Lateral Load.” Ph.D., Leibniz Universität Hannover, Hannover, Germany.
    Liu, P. L.-F. (1973). “Damping of Water Waves over Porous Bed.” Journal of the Hydraulics Division, 99(12), 2263-2271.
    Madsen, O. S. (1978). “Wave-Induced Pore Pressures and Effective Stresses in a Porous Bed.” Geotechnique, 28(4), 377-393.
    Martin, G. R., Finn, W. D. L., and Seed, H. B. (1975). “Fundamentals of Liquefaction under Cyclic Loading.” Journal of the Geotechnical Engineering Division, 101(5), 423-438.
    Massel, S. R. (1976). “Gravity-Waves Propagated over Permeable Bottom.” Journal of the Waterways, Harbors, and Coastal Engineering Division, 102(2), 111-121.
    McDougal, W. G., Tsai, Y. T., Liu, P. L.-F., and Clukey, E. C. (1989). “Wave-Induced Pore Water Pressure Accumulation in Marine Soils.” Journal of Offshore Mechanics and Arctic Engineering, 111(1), 1-11.
    Moshagen, H., and Tørum, A. (1975). “Wave Induced Pressures in Permeable Seabeds.” Journal of the Waterways, Harbors, and Coastal Engineering Division, 101(1), 49-57.
    Moussa, A. A. (1975). “Equivalent Drained-Undrained Shearing Resistance of Sand to Cyclic Simple Shear Loading.” Geotechnique, 25(3), 485-494.
    Nakamura, H., Onishi, R., and Minamide, H. (1973). “On the Seepage in the Seabed due to Waves.” Proc., the 20th Coastal Engineering Conference, Japan Society of Civil Engineers, 421-428.
    Putnam, J. A. (1949). “Loss of Wave Energy due to Percolation in a Permeable Sea Bottom.” Transactions, American Geophysical Union, 30(3), 349-356.
    Rahman, M. S., and Layas, F. M. (1986). “Pore Pressure in Ocean-Floor Sands under Random Waves.” Marine Geotechnology, 6(4), 341-358.
    Reid, R. O., and Kajiura, K. (1957). “On the Damping of Gravity Waves over a Permeable Sea Bed.” Transactions, American Geophysical Union, 38(5), 662-666.
    Seed, H. B., Martin, P. P., and Lysmer, J. (1975). “The Generation and Dissipation of Pore Water Pressure during Soil Liquefaction.” Earthquake Engineering Research Center, Berkeley, California.
    Seed, H. B., and Rahman, M. S. (1978). “Wave‐Induced Pore Pressure in Relation to Ocean Floor Stability of Cohesionless Soils.” Marine Geotechnology, 3(2), 123-150.
    Sumer, B. M., and Cheng, N.-S. (1999). “A Random-Walk Model for Pore Pressure Accumulation in Marine Soils ” Proc., the 9th International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers (ISOPE), Cupertino, California, 521-528.
    Sumer, B. M., and Fredsøe, J. (2002). The Mechanics of Scour in the Marine Environment, World Scientific.
    Sumer, B. M., Kirca, V. S. O., and Fredsøe, J. (2012). “Experimental Validation of a Mathematical Model for Seabed Liquefaction Under Waves.” International Journal of Offshore and Polar Engineering, 22(2), 133-141.
    Terzaghi, K. (1925). Erdbaumechanik auf Bodenphysikalischer Grundlage, Franz Deuticke.
    Terzaghi, K. (1936). “Relation Between Soil Mechanics and Foundation Engineering: Presidential Address.” Proc., the International Conference on Soil Mechanics and Foundation Engineering, Harvard University, Cambridge, Massachusetts, 13-18.
    Verruijt, A. (1969). “Elastic Storage of Aquifers.” Flow through Porous Media, R. J. M. De Wiest, ed., Academic Press, New York, U.S.A., 331-376.
    Verruijt, A. (2010). An Introduction to Soil Dynamics, Springer.
    Wichtmann, T., Niemunis, A., and Triantafyllidis, T. (2010). “On the "Elastic" Stiffness in a High-Cycle Accumulation Model for Sand: a Comparison of Drained and Undrained Cyclic Triaxial Tests.” Canadian Geotechnical Journal, 47(7), 791-805.
    Yamamoto, T. (1977). “Wave Induced Instability in Seabeds.” Proc., the 5th Symposium of the Waterway, Port, Coastal and Ocean Division of ASCE, ASCE, New York, 898-913.
    Yamamoto, T., Koning, H. L., Sellmeijer, H., and Van Hijum, E. (1978). “On the Response of a Poro-Elastic Bed to Water Waves.” Journal of Fluid Mechanics, 87(1), 193-206.
    Zen, K., and Yamazaki, H. (1990). “Oscillatory Pore Pressure and Liquefaction in Seabed Induced by Ocean Waves.” Soils and Foundations, 30(4), 147-161.
    Zen, K., and Yamazaki, H. (1993). “Wave-induced Liquefaction in a Permeable Seabed.” Report of the Port and Harbour Research Institute, 31(5), 155-192.
    張上君(2006),「波浪力作用下直立堤附近海床土壤動態行為之研究」,博士論文,國立臺灣海洋大學河海工程學系,基隆市。
    張志新(2004),「波浪作用下海床砂土液化機制與評估模式之研究」,博士論文,國立臺灣海洋大學河海工程學系,基隆市。
    許永昇(1996),「由波浪引起多孔海床孔隙水壓分佈之研究」,碩士論文,國立成功大學土木工程學系,臺南市。
    許俊宏(1993),「砂質土壤在海域環境中之孔隙水壓分佈及液化行為」,碩士論文,國立成功大學土木工程學系,臺南市。
    藍元志(2000),「波浪與可透水彈性體互相作用之分析」,博士論文,國立成功大學水利及海洋工程學系,臺南市。

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE