簡易檢索 / 詳目顯示

研究生: 蘇泊沅
Su, Bo-Yuan
論文名稱: 溶膠凝膠法製備氧化鋅基薄膜之光電特性探討及其在薄膜電晶體之應用
Investigation of the optical and electrical properties of ZnO-based thin films grown via sol-gel method for thin-film transistor application
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 146
中文關鍵詞: 溶膠凝膠法氧化鋅基薄膜氧化銦鎵鋅
外文關鍵詞: sol-gel method, ZnO-based films, IGZO
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅薄膜擁有N型導電性及高穿透度特性可應用為透明電極、太陽能電池及薄膜電晶體等電子元件。本文中,成功以溶膠凝膠法製備氧化鋅基薄膜為抗反射層並用於砷化鎵太陽能電池。成功提昇太陽能電池的光電流密度,整體電池的轉換效率也從原來(8.2%)提升至(13.86%)。
    此外,我們也利用溶膠凝法製備氧化鋅基薄膜電晶體,並探討鋰的摻雜對於氧化鋅薄膜電晶體之影響。研究中顯示,氧化鋅摻鋰薄膜有更緻密薄膜形態,改善的載子濃度和減少的氧空缺使得薄膜電晶體有良好的元件電穩定性。
    近年來非晶相金屬氧化物薄膜電晶體 (氧化銦鋅、氧化銦鋅鎵)因為擁有高載子遷移率以及均勻的薄膜表面粗操度,應用於主動式陣列有機發光二極(AMOLED),一直受到矚目。本文中我們成功利用溶膠凝膠法以適當溶液比例的前趨物(醋酸鋅、硝酸鎵、硝酸銦)製備非晶相氧化銦鋅、氧化銦鎵鋅薄膜並製作成薄膜電晶體。文章中,我們探討後真空退火對於氧化銦鋅薄膜緻密化及孔洞性之影響,因而改善薄膜電晶體特性。另外我們探討鎂的摻雜對於氧化銦鎵鋅薄膜之影響。鎂的摻雜可以有效降低介面能態密度及降低薄膜的氧缺陷因而改善元件的電熱穩定性。
    最後,相較於一般溶膠凝膠法需要高溫熱(>400 °C)退火的處理。本文發展紫外光臭氧照射並搭配後真空退火處理方式成功在低的製程溫度(200-300 °C)製備出高表現的IGZO薄膜電晶體。製備之電晶體其元件載子遷移率可達1.73 cm2/Vs,次臨限擺幅0.32V/dec,電流開關比超過1.3×107。此結果顯示紫外光臭氧激發能夠使得溶膠凝膠法在低溫製程下即可製備出氧化物薄膜半導體,將來可以廣泛應用於軟性電子元件。

    Zinc oxide (ZnO) thin films with n-type conductivity and high transparency have been applied in devices such as transparent electrodes, photovoltaic cells, and thin-film transistors (TFTs). In this work, ZnO-based films were deposited by the sol-gel method and utilized as an anti-reflective coating (ARC) to enhance the light gathering capability and short-circuit current density (Jsc) of GaAs solar cells. The ARC significantly enhanced the conversion efficiency of cells from 8.2% to 13.86%. The results indicate that chemically deposited ZnO films are effective ARCs for GaAs solar cells.
    In addition, the effect of lithium (Li) doping on the performance of solution-processed ZnO TFTs grown using the sol-gel method was investigated. Sol-gel-grown ZnO films have a polycrystalline phase with a cracked surface morphology due to the high-temperature thermal annealing. Li doping led to a compact surface morphology of the ZnO films. Moreover, Li doping reduced the carrier concentration and oxygen deficiency of ZnO films, improving TFT performance.
    To study amorphous metal oxide thin films, InZnO (IZO) and InGaZnO (IGZO) films were prepared by spin-coating the sol with an aqueous solution of zinc acetate dihydrate, indium nitrate hydrate, and gallium nitrate hydrate for application as channel layers in TFTs. IZO and IGZO TFTs are attractive for use in active-matrix organic light-emitting diode (AMOLED) displays due to their high mobility and uniform roughness. In the present work, post-vacuum annealing treatment was used to aid sol-gel condensation and film densification to improve IZO TFT performance. The refractive index values were determined to explain the reduction in film porosity with increasing post-annealing temperature.
    Moreover, the doping effect of Mg incorporated into IGZO thin film was studied. An Mg-doped IGZO TFT device showed improved gate bias and thermal stability due to fewer oxygen deficiencies, smaller carrier concentration, and less interface electron trapping in the a-IGZO films.
    Finally, ultraviolet (UV)-ozone photo-annealing and vacuum annealing were applied to fabricate low-temperature high-performance solution-processed IGZO TFTs. Generally, precursor-based methods require high temperatures (over 400 °C) to promote the metal-oxide-metal condensation reaction and to remove impurities and unnecessary carbon groups. With both UV-ozone irradiation and vacuum annealing treatment, IGZO TFTs with excellent characteristics (a field-effect mobility of 1.73 cm2V-1s-1, a subthreshold slope (S) of 0.32 Vdec-1, and an on/off current ratio greater than 1.3×107) can be fabricated at low process temperatures of 200-300 °C. The obtained results indicate that UV-ozone photo-annealing is an efficient process for the low-temperature preparation of sol-gel oxide semiconductors for flexible electronics applications.

    Table of Contents Abstract (English)...................................................................................................................I Abstract (Chinese)................................................................................................................III List of Journal Paper Publications........................................................................................ V Table of Contents.................................................................................................................VI List of Tables........................................................................................................................XI List of Figures....................................................................................................................XIII Chapter 1 Introduction........................................................................................................1 1.1 Background...................................................................................................................1 1.2 Motivation.....................................................................................................................1 1.3 Organization of this Thesis...........................................................................................4 Chapter 2 Theory and Literature Review..........................................................................5 2.1 Antireflective coatings on solar cell.............................................................................5 2.2 Application of TFTs.....................................................................................................6 2.3 Overview of thin film transistor...................................................................................8 2.4 Zinc oxide...................................................................................................................12 2.5 Device structure of Thin Film Transistor...................................................................14 2.6 Basic operation of Thin Film Transistor.....................................................................16 Chapter 3 Experiments and measurement techniques...................................................21 3.1 Experimental methods................................................................................................21 3.1.1 Introduction to the sol-gel method.......................................................................21 3.1.2 Synthesis of the precursors..................................................................................23 3.1.3 Chemical deposition of sol-gel grown ZnO and AZO films as antireflective layers on GaAs solar cells.............................................................................................24 3.1.4 The fabrication of thin film transistors devices...................................................25 3.2 Characterization for materials and devices.................................................................26 3.2.1 Measurement of solar cell characteristics............................................................26 3.2.2 Scanning electro microscopy (SEM)...................................................................27 3.2.3 X-ray diffraction spectroscopy............................................................................28 3.2.4 UV transmittance and absorption........................................................................28 3.2.5 Thermal gravimetric analysis..............................................................................29 3.2.6 Hall effect measurement......................................................................................30 Chapter 4 Results and Discussions...................................................................................33 4.1 Antireflective and radiation resistant ZnO-based thin films for the efficiency enhancement of GaAs photovoltaics................................................................................33 4.1.1 Descriptions.........................................................................................................33 4.1.2 Conceptions..........................................................................................................33 4.1.3 Specific methods..................................................................................................34 4.1.3.1 Solar cell fabrication........................................................................34 4.1.3.2 Chemical deposition of sol-gel grown ZnO and AZO film.............35 4.1.3.3 Characterization techniques.............................................................35 4.1.4 Achievements and explanations...........................................................................36 4.1.4.1 Structural and optical characterization of ZnO-based films.............36 4.1.4.2 Degradation tests of solar cells and electrical performance.............37 4.1.5 Summary..............................................................................................................41 4.2 Improved Electrical and Thermal Stability of Solution-Processed Li-doped ZnO Thin-Film Transistors.......................................................................................................57 4.2.1 Description...........................................................................................................57 4.2.2 Conception...........................................................................................................57 4.2.3 Specific methods..................................................................................................58 4.2.4 Achievements and explanations...........................................................................60 4.2.4.1 Structure and morphology analyses of the Li-doped ZnO film ........60 4.2.4.2 Characteristics of the Li-doped ZnO TFTs.......................................60 4.2.4.3 XPS spectra of Li-doped ZnO films.................................................62 4.2.4.4 Thermal stability measurement of Li-doped ZnO TFTs...................63 4.2.5 Summary..............................................................................................................63 4.3 Improved Negative Bias Stress Stability of IZO Thin Film Transistors via Post-vacuum Annealing of Solution Method...................................................................73 4.3.1 Descriptions.........................................................................................................73 4.3.2 Conceptions..........................................................................................................73 4.3.3 Specifics methods................................................................................................75 4.3.3.1 IZO films synthesized via sol-gel method.......................................75 4.3.3.2 IZO films synthesized via sol-gel method.......................................75 4.3.3.3 Post-vacuum annealing of IZO TFTs..............................................76 4.3.4 Achievement and explanations............................................................................76 4.3.5 Summary..............................................................................................................80 4.4 Effects of Mg doping on the Gate Bias and Thermal Stability of Solution-processed InGaZnO Thin-film Transistors........................................................................................88 4.4.1 Descriptions.........................................................................................................88 4.4.2 Conceptions.........................................................................................................88 4.4.3 Specifics methods................................................................................................89 4.4.3.1 IGZO films synthesized via the sol-gel method...............................89 4.4.3.2 Fabrication of IGZO TFTs...............................................................90 4.4.4 Achievements and explanations...........................................................................91 4.4.4.1 Characterization of Mg-doped IGZO films......................................91 4.4.4.2 Characteristics of Mg-doped IGZO TFTs........................................92 4.4.4.3 XPS spectra of Mg-doped IGZO films............................................93 4.4.4.4 Stability measurement of Mg-doped IGZO TFTs............................94 4.4.5 Summary..............................................................................................................95 4.5 High-performance Low-temperature Solution-processed InGaZnO Thin-film Transistors via ultraviolet-ozone photo-annealing.........................................................103 4.5.1 Descriptions.......................................................................................................103 4.5.2 Conceptions........................................................................................................103 4.5.3 Specific methods................................................................................................105 4.5.4 Achievements and explanations.........................................................................106 4.5.4.1 Characterization of IGZO films.....................................................106 4.5.4.2 Characteristics of UV-ozone treated IGZO TFTs...........................107 4.5.4.3 XPS spectra of UV-ozone treated IGZO films...............................108 4.5.4.4 Stability measurement of UV-ozone treated IGZO TFTs...............109 4.5.4.5 Characteristics of vacuum-annealed IGZO TFTs...........................109 4.5.4.6 XPS spectra of vacuum-annealed IGZO films...............................110 4.5.5 Summary............................................................................................................112 Chapter 5 Conclusions and Suggestions.........................................................................126 5.1 Conclusions...............................................................................................................126 5.2 Future work...............................................................................................................127 References.........................................................................................................................128

    References
    [1] H. H. Afify, S. H. EL-Hefnawi, A. Y. Eliwa, M. M.Abdel-Naby, and N. M. Ahmed, “Realization and characterization of ZnO/n-Si solar cells by spray pyrolysis”, Egypt. J. Solids, 28, 2 (2005).
    [2] L. Saad, and M. Riad, “Characterization of various zinc oxide catalysts and their activity in the dehydration-dehydrogenation of isobutanol”, J. Serb. Chem. Soc., 73, 997 (2008).
    [3] A. Menze, K. Subannajui, F. Güder, D. Moser , O. Paul , and Margit Zacharias, “Multifunctional ZnO-Nanowire-Based Sensor”, Adv. Funct. Mater., 21, 4342 (2011).
    [4] M. Purica, E. Budianu, E. Rusu , M. Danila , and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)”, Thin Solid Films, 403, 485 (2002).
    [5] B. M. Ataev, V. V. Mamedov, A. K. Omaev, and B. A. Magomedov, “Epitaxial ZnO films grown by RF-assisted low-temperature CVD method”, Mater. Sci. Semicond. Process, 6, 535 (2003).
    [6] K. Yoshino, T. Fukushima, and M. Yoneta, “Structural, optical and electrical characterization on ZnO film grown by a spray pyrolysis method”, J. Mater. Sci. Mater. Electron., 16, 403 (2005).
    [7] J. H. Lee, B. W. Yeo, B. O. Park, “Effect of the annealing treatment on electrical and optical properties of ZnO transparent conductive films by ultrasonic spray pyrolysis”, Thin Solid Films, 457, 333 (2004).
    [8] Y. Jiang, and N. Bahlawane, “Effect of nucleation and growth kinetics on the electrical and optical properties of undoped ZnO films”, J. Phys. Chem. C, 114, 5121 (2010).
    [9] X. B. Wang, C. Song, D. M. Li, K. W. Geng, and F. Zeng, F. Pan, “The influence of different doping elements on microstructure、piezoelectric coefficient and resistivity of sputtered ZnO film”, Appl. Surf. Sci., 253, 1639 (2006).
    [10] H. Ishizaki, M. Imaizumi, S. Matsuda, M. Izaki, and T. Ito, “Incorporation of boron in ZnO film from an aqueous solution containing zinc nitrate and dimethylamine-borane by electrochemical reaction”,Thin Solid Films, 411, 65 (2002).
    [11] M. Wang, E. J. Kim, E. W. Shin, J. S. Chung, S. H. Hahn and C. Park, “Low-temperature solution growth of high-quality ZnO thin films and solvent-dependent film texture”, J. Phys. Chem. C, 112, 1920 (2008).
    [12] C. H. Ku, H. H. Yang, G. R. Chen and J. J. Wu, “Wet-Chemical Route to ZnO Nanowire-Layered Basic Zinc Acetate/ZnO Nanoparticle Composite Film”, Cryst. Growth Des., 8, 1 (2008).
    [13] P. Chen, X. Ma, Y. Zhang, D. Li and D. Yang, “Electrophotoluminescence of sol-gel derived ZnO film: Effect of electric field on near-band-edge photoluminescence”, Opt. Express, 17, 11437 (2009).
    [14] S. H. Yoon, D. Liu, D. Shen, M. Park, and D. J. Kim, “Effect of chelating agents on the preferred orientation of ZnO films by sol-gel process”, J. Mater. Sci., 43, 6177 (2008).
    [15] C. H. Ku, H. H. Yang, G. R. Chen and J. J. Wu, “ Wet-chemical route to ZnO nanowire-layered basic zinc acetate/ZnO nanoparticle composite film”, Cryst. Growth Des., 8, 1 (2008).
    [16] H. S. Shin, G. H. Kim, W. H. Jeong, B. D. Ahn, and H. J. Kim, “Electrical Properties of Yttrium–Indium–Zinc-Oxide Thin Film Transistors Fabricated Using the Sol–Gel Process and Various Yttrium Compositions”, Jpn. J. Appl. Phys., 49, 03CB01 (2010)
    [17] M. Ortega-Lopez, A. Avila-Garcia, M. L. Albor-Aguilera, and V. M. Sanchez Resendiz, “Improved efficiency of the chemical bath deposition method during growth of ZnO thin films”, Mater. Res. Bull., 38, 1241 (2003).
    [18] P. Li, Y. Wei, H. Liu, and X. K. Wang, “Growth of well-defined ZnO microparticles with additives from aqueous solution”, J. Solid State Chem., 178, 855 (2005).
    [19] A. M. Peiro, C. Domingo, J. Peral, X Domenech, E. Vigil, M. A. Hernandez-Fenollosa, M. Mollar, B. Mari, and J. A. Ayllon, “Nanostructured zinc oxide films grown from microwave activated aqueous solutions”, Thin solid films, 483, 79 (2005).
    [20] B. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns”, Adv. Mater., 21, 1618 (2009).
    [21] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells”, Nano Lett., 8, 5 (2008).
    [22] T. Fujibayashi, T. Matsui and M. Kondo, “Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating”, Appl. Phys. Lett., 88, 183508 (2006).
    [23] C. Algora and M. F. Alcaraz, “Performance of antireflecting coating-AlGaAs window layer coupling for terrestrial concentrator GaAs solar cells”, IEEE Trans. Electron Devices, 44, 1499 (1997).
    [24] C. Y. Huang, D. Y. Wang, C. H. Wang, Y. T. Chen, Y. T. Wang, Y. T. Jiang, Y. J. Yang, C. C. Chen, and Y. F. Chen, “Efficient Light Harvesting by Photon Downconversion and Light Trapping in Hybrid ZnS Nanoparticles/Si Nanotips Solar Cells”, ACS Nano, 4, 5849 (2010).
    [25] C. T. Wu, F. H. Ko, and C. H. Lin, Self-Organized Tantalum Oxide Nanopyramidal Arrays for Antireflective Structure,Appl. Phys. Lett.; Appl. Phys, Appl. Phys. Lett., 90, 171911 (2007).
    [26] G. Leftheriotis, S. Papaefthimiou, and P. Yianoulis, “Integrated low-emittance electrochromic devices incorporating ZnS/Ag/ZnS coatings as transparent conductors”, Sol. Energy Mater. Sol. Cells, 61, 107 (2000).
    [27] B. H. Liao, and C. C. Lee, “Antireflection coatings for deep ultraviolet optics deposited by magnetron sputtering from Al targets”, Opt. Express, 19, 7508 (2011).
    [28] B. Sun, and H. Sirringhaus, “Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods”, Nano Lett., 5, 2408–2413 (2005).
    [29] G. Adamopoulos, A. Bashir, S. Thomas, W. P. Gillin, S. Georgakopoulos, M. Shkunov, M. A. Baklar, and N. Stingelin, “Spray-Deposited Li-Doped ZnO Transistors with Electron Mobility Exceeding 50 cm2/Vs”, Adv. Mater., 22, 4764 (2010).
    [30] S. T. Meyers, J. T. Anderson, C. M. Hung, J. Thompson, J. F. Wager, and D. A. Keszler, “Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs”, J. Am. Chem. Soc., 130, 17603 (2008).
    [31] C. L. Lin and Y. C. Chen, “A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED”,IEEE Electron Device Lett., 28, 129 (2007).
    [32] H. Lee, Y. C. Lin, H. P. D. Shieh, and J. Kanicki, “Current-Scaling a-Si:H TFT Pixel-Electrode Circuit for AM-OLEDs: Electrical Properties and Stability”, IEEE Trans. Electron Devices, 54, 2403 (2007).
    [33] Y. H. Kim, M. K. Han, J. I. Han, and S. K. Park, IEEE Trans. Electron Device, “Effect of Metallic Composition on Electrical Properties of Solution-Processed Indium-Gallium-Zinc-Oxide Thin-Film Transistors”, 57, 5 (2010).
    [34] W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang, and C. C. Lee, “Oxygen-dependent instability and annealing/passivation effects in amorphous In–Ga–Zn–O thin-film transistors”, IEEE Electron Device Lett., 32, 11 (2011).
    [35] P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, C. S. Fuh, and H. P. D. Shieh, “Ambient Stability Enhancement of Thin-Film Transistor With InGaZnO Capped With InGaZnO:N Bilayer Stack Channel Layers”, IEEE Electron Device Lett., 32, 10 (2010).
    [36] S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, “High temperature-induced abnormal suppression of sub-threshold swing and on-current degradations under hot-carrier stress in a-InGaZnO thin film transistors”, Solid-State Electron., 54, 1497 (2010).
    [37] C. L. Wang, X. Q. Liu, X. H. Xiao, Y. L. Liu, W. Chen, J. C. Li, G. Z. Shen, and L. Liao, “High Mobility Solution-processed Amorphous Indium Zinc Oxide/In2O3 Nanocrystals Hybrid Thin Film Transistor” ,IEEE Electron Device Lett., 34, 1 (2013).
    [38] D. H. Lee, Y. J. Chang, G. S. Herman, and C. H. Chang, “A General Route to Printable High-Mobility Transparent Amorphous Oxide Semiconductors”, Adv. Mater., 19, 843 (2007).
    [39] Y. S. Rim, W. H. Jeong, D. L. Kim, H. S. Lim, K. M. Kim, and H. J. Kim, “Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors”, J. Mater. Chem., 22, 12491 (2012).
    [40] K. Song, C. Y. Koo, T. Jun, D. Lee, Y. Jeong, J. Moon, “Low-Temperature, Solution-Processed Zinc Tin Oxide Thin-Film Transistors Fabricated by Thermal Annealing and Microwave Irradiation”, J. Cryst. Growth, 326, 23 (2011).
    [41] K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, and H. Sirringhaus, “Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process”, Nat. Mater., 10,45 (2011).
    [42] S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, Adv. Mater., 22, 1346 (2010).
    [43] R. E. Van de Leest, “UV photo-annealing of thin sol-gel films”, Appl. Surf. Sci., 86, 278 (1995).
    [44] K. Lai, K. Kumar, A. Chou, and J. C. Lee, “Effects of oxide exposure, photoresist and dopant activation on the plasma damage immunity of ultrathin oxides and oxynitrides”, IEEE Electron Device Lett., 17, 3 (1996).
    [45] A. Goetzberger, J. Knobloch, B. Voss, Crystalline silicon solar cells, Wiley, New York, 1998, pp. 115–120.
    [46] D. Wan, H. L. Chen, T. C. Tseng, C. Y. Fang, Y. S. Lai, and F. Y. Yeh, “Antireflective Nanoparticle Arrays Enhance the Efficiency of Silicon Solar Cells ”, Adv. Funct. Mater., 20, 3064 (2010).
    [47] R. A. Street, “Thin-Film Transistors ”, Adv. Mater., 21, 2007 (2009).
    [48] J. E. Lilienfeld, “Method and apparatus for controlling electric currents”, U. S. Patent, No. 1745175 (1930).
    [49] P. K. Weimer, “An evaporated thin film triode”, IRE-AICE Device Eesearch Conference, Stanford, CA, June, (1961).
    [50] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel ”,IEEE Trans. Electron Devices, 20, 995 (1973).
    [51] W. E. Spear, and P. G. Lecombe, “Electronic properties of substitutionally doped amorphous Si and Ge”, Philos. Mag., 33, 935 (1976).
    [52] W. E. Spear, and P. G. Lecomber, “Substitutional doping of amorphous silicon”, Solid State Commun., 17, 1193 (1975).
    [53] P. G. Lecomber, W. E. Spear, and A. Ghaith, “Physics of amorphous silicon based alloy field‐effect transistors”, Electron. Lett., 15, 179 (1979).
    [54] W. E. Spear, P. G .Lecomber, S. Kinmond, and M. H. Brodsky, “Amorphous silicon p‐n junction ”, Appl. Phys. Lett., 28, 105 (1976).
    [55] S. W. Depp, A. Juliana, and B. G. Huth, “Polysilicon FET Devices for Large Area Inputloutput Applications”, 1980 Int. Electron Device Mtg. (IEEE, New York, 1980) 703.
    [56] A. Juliana, S. W. Depp, B. G. Huth, and, T. Sedgwick, “Thin-Film Polysilicon Devices for Flat Panel Display Circuitry”, Digest 1982 SID Int. Symp. (Soc. For Inf. Display, San Jose, 1982) 38.
    [57] T. Nishimura, Y. Akasaka, and H. Nakata, “Characteristics of TFT Fabricated in Laser-Recrystallized Polysilicon for Active LC Display”, Op. Cit., p36.
    [58] Y. Ohya, T. Niwa, T. Ban, and Y. Takahashi, “Thin Film Transistor of ZnO Fabricated by Chemical Solution Deposition”, Jpn. J. Appl. Phys., 40, 297 (2001).
    [59] B. J. Norris, J. Anderson, J. F. Wager, and D. A. Keszler, “Spin-coated zinc oxide transparent transistors”, J. Phys. D: Appl. Phus., 36, L105 (2003).
    [60] S. Masuda, K. Kitamura, Y. Okumura, and S. Miyataka, “ZnO-based transparent thin-film transistors”, J. Appl. Phys., 93, 1624 (2003).
    [61] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors ”, Appl. Phys. Lett., 82, 733 (2003).
    [62] P. F. Carcia, R. S. Mclean, M. H. Reilly, and G. Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering”, Appl. Phys. Lett., 82, 1117 (2003).
    [63] S. D. Brotherton, “Polycrystalline silicon thin film transistors”, Semiconductor Sci. Technol., 10, 721 (1995).
    [64] J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. W. Zhan, “n-Type Organic Semiconductors in Organic Electronics”, Adv. Mater., 22, 3876 (2010).
    [65] H. Sirringhaus, “Reliability of Organic Field-Effect Transistors”, Adv. Mater., 21, 3859 (2009).
    [66] T. Kamiya, K. Nomura, H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors”, Sci. Technol. Adv. Mater, 11, 44305 (2010).
    [67] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors”, Science, 300, 1269 (2003).
    [68] H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, J. Non-Cryst. Solids, 200, 165 (1996).
    [69] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer ”, Appl. Phys. Lett., 86, 013503 (2005).
    [70] R. L. Hoffman, “Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors”, Solid State Electron., 50 , 784 (2006).
    [71] P. Gorrn, M. Sande, J. Meyer, M. Kroger, E. Becker, H. H. Johannes, W. Kowalsky, T. Riedl, “Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes”, Adv. Mater., 18, 738 (2006).
    [72] W. B. Jackson, R. L. Hoffman, G. S. Herman, “High-performance flexible zinc tin oxide field-effect transistors”, Appl. Phys. Lett., 87, 193503 (2005).
    [73] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C. H. Park, and D. A. Keszler, “Transparent thin-film transistors with zinc indium oxide channel layer”, J. Appl. Phys., 97, 064505 (2005).
    [74] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato, “Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide”, J. Non-Cryst. Solids, 352, 1749 (2006).
    [75] B. Yaglioglu, H. Y. Yeom, R. Beresford, D. C. Paine, “High-mobility amorphous In2O3–10 wt %ZnO thin film transistors”, Appl. Phys. Lett., 89, 062103 (2006).
    [76] D. C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, “Amorphous IZO-based transparent thin film transistors”,Thin Solid Films, 516, 5894 (2008).
    [77] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, E. Fortunato, “Toward High-Performance Amorphous GIZO TFTs”, J. Electrochem. Soc, 156, H161 (2009).
    [78] A. Suresh, P. Wellenius, A. Dhawan, J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors”, Appl. Phys. Lett., 90 ,123512 (2007).
    [79] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment”, Appl. Phys. Lett., 90, 2106 (2007).
    [80] D. Kang, I. Song, C. Kim, Y. Park, T. D. Kang, H. S. Lee, J. W. Park, S. H. Baek, S. H. Choi, and H. Lee, “Effect of Ga/In ratio on the optical and electrical properties of GaInZnO thin films grown on SiO2/Si substrates”,Appl. Phys. Lett., 91, 091910 (2007).
    [81] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, “Factors controlling electron transport properties in transparent amorphous oxide semiconductors”, J. Non-Cryst. Solids, 354, 2796 (2008).
    [82] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system”, Appl. Phys. Lett., 90, 2114 (2007).
    [83] R. Martins, L. Raniero, L. Pereira, D. Costa, H. Aguas, S. Pereir, L. Silva, A. Goncalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors”, Phil. Mag, 89, 2699 (2009).
    [84] A. Bakin, A. El-Shaer, A. C. Mofor, M. Al-Suleiman, E. Schlenker, and A. Waag, “ZnMgO-ZnO Quantum Wells Embedded in ZnO Nanopillars: Towards Realisation of Nano-LEDs”, Phys. Stat. Solidi (c), 4, 158 (2007).
    [85] A. Bakin, A. Behrends, A. Waag, H. Lugauer, A. Laubsch, and K. Streubel, “ZnO-GaN hybrid heterostructures as potential cost-efficient LED technology,Proceedings of the IEEE”, 98, 1281–1287 (2009).
    [86] D.C. Look, “Recent advances in ZnO materials and devices”, Materials Science and Engineering, B80, 383–387 (2001).
    [87] S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, C. Evans, A. J. Nelson, and A. V. Hamza, “Ion-beam-produced structural defects in ZnO”, Phys. Rev. B, 67, 094115 (2003).
    [88] D. P. Norton, Y. W. Heo, M. P. Lvill, K. Ip, S. J. Peaton, M. F. Chisholm, and T. Steiner, “Low-k dielectric materials”, Mater. Today, 34 (2004).
    [89] M. E. Fragala, G. Malandrino, M. M. Giangregorio, M. Losurdo, G. Bruno, S. Lettieri, L. S. Amato, and P. Maddalena, “Structural, Optical, and Electrical Characterization of ZnO and Al-doped ZnO Thin Films Deposited by MOCVD”, Chem. Vapor Depos., 15, 327–333 (2009).
    [90] F. H. Wang, H. P. Chang, C. C. Tseng, C. C. Huang, and H. W. Liu, “Influence of Hydrogen Plasma Treatment on Al-doped ZnO Thin Films for Amorphous Silicon Thin Film Solar Cells”, Curr. Appl. Phys., 11, S12 (2011).
    [91] H. Saarenp¨a¨a, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices”, Sol. Energy Mater. Sol. Cells, 94, 1379 (2010).
    [92] M. A. Kaid, and A. Ashour, “Preparation of ZnO-doped Al films by spray pyrolysis technique”, Appl. Surf. Sci., 253, 3029 (2007).
    [93] S. S. Badadhe, and I. S. Mulla, “Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis”, Sens. Actuator B-Chem., 156, 943 (2011).
    [94] C.Y. Hsu, T.F. Ko, and Y.M. Huang, “Influence of ZnO buffer layer on AZO film properties by radio frequency magnetron sputtering”, J. Eur. Ceram. Soc., 28, 3065 (2008).
    [95] R. B. H. Tahar, “Structural and electrical properties of aluminum-doped zinc oxide films prepared by sol-gel process”, J. Eur. Ceram. Soc., 25, 3301 (2005).
    [96] X. Zhang, Y. Feng, P. Lv, Y. Shen, and W. Feng, “Enhanced reversible photoswitching of azobenzene-functionalized graphene oxide hybrids”, Langmuir, 26, 18508 (2010).
    [97] D. Y. Inamdar, A. D. Lad, A. K. Pathak, I. Dubenko, N. Ali, and S. Mahamuni, “Ferromagnetism in ZnO Nanocrystals: Doping and Surface Chemistry”, J. Phys. Chem. C, 1451–1459 (2010).
    [98] A. C. Tickle, “Thin-Film Transistors - A New Approach to Microelectronics”, Wiley, New York (1969).
    [99] C. R. Kagan, and P. Andry, “Thin Film Transistors”, New York: Marcel Dekker, Inc., (2003).
    [100] J. T. Wallmark, H. Johnson, “Field-Effect Transistors”, Prentice-Hall, Englewood Cliffs, NJ (1966).
    [101] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances”, Adv. Mater., 24, 2945 (2012).
    [102] P. K. Hsu, (2002), “Transparent Amorphous Zn-Sn-O Thin Film Transistors with Indium Free Electrodes”, Unpublished master’s thesis, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.
    [103] H. C. Cheng, “The Fabrication and Characteristics of ZnO Semiconducting Thin Film and Thin Film Transistors By Solution Method”, Unpublished doctoral thesis, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.
    [104] J. F. Wager, D. A. Keszler, and R. E. Presley, “Transparent Electronics”, Springer, 10-11 (2008).
    [105] W. J. Park, H. S. Shin, B. Du Ahn, G. H. Kim, S. M. Lee, K. H. Kim, and H. J. Kim, “Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor”, Appl. Phys. Lett., 9, 083508 (2008).
    [106] E. S. Yang, “Microelectronic Device”, McGraw-Hill, Singapore (1988).
    [107] D. K. Schroder, “Semiconductor Material and Device Characterization”, John Wiley & Sons, Inc., New Jersey (2006).
    [108] C. J. Brinker and G. W. Sherer, “Sol-Gel Science”, Academic Press, San Diego, (1990).
    [109] C. J. Brinker, A. J. Hurd, P. R. Schunk, C. S. Ashely, R. A. Cairncross, J. Samuel, K. S. Chen, C. Scotto and R. A. Schwartz, “Metallurgical and Ceramic Protective Coatings”, Chapman & Hall, London, pp. 112-151 (1996).
    [110] T. Troczynski and Q. Yang, “Process for Making Chemically Bonded Sol-Gel Ceramics”,U.S. Pat., No. 6,284,682 (2001).
    [111] T. Olding, M. Sayer and D. Barrow, “Ceramic Sol-Gel Composite Coatings for
    Electrical Insulation”, Thin Solid Films, 398, 581-586 (2001).
    [112] S. Bandyopadhyay, G. K. Paul, R. Roy, S. K. Sen, and S. Sen, “Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique”, Materials Chemistry and Physics, 74, 83 (2002).
    [113] D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme Quantum Limit”, Phys. Rec. Lett., 48, 1559 (1982).
    [114] R. B. Laughlin, “The Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations”, Phys. Rev. Lett., 50, 1395 (1983).
    [115] F. D. M. Haldane, “Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States”, Phys. Rev. Lett., 51, 605 (1983).
    [116] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., 90, 183516 (2007).
    [117] J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions”,Appl. Phys. Lett., 93, 123505 (2008).
    [118] S. Bothra, and J. M. Borrego, “Design of GaAs solar cells with low doped base”, Solar Cells, 28, 95 (1990).
    [119] D. J. Van, G. J. Bauhuis, J. J. Schermer, P. Mulder, E. J. Haverkamp, and P. K. Larsen, “On the development of high-efficiency thin-film GaAs and GaInP2 cells ”, J. Cryst. Growth, 298, 772 (2007).
    [120] R. Wang, Y. H. Liu and X. F. Sun, “Anisotropic deformation of polystyrene particles by MeV Au ion irradiation”, Nuclear Instruments and Methods in Physics Research B, 266, 745 (2008).
    [121] D. Pons and J. C. Bourgoin, “Irradiation-induced defects in GaAs”, J. Phys. Chem., 18, 3839 (1985).
    [122] J. Gilot , M. M. Wienk , and R. A. J. Janssen, “Measuring the External Quantum Efficiency of Two-Terminal Polymer Tandem Solar Cells”, Adv. Funct. Mater., 20, 3904 (2010).
    [123] J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Optimizing Polymer Tandem Solar Cells”, Adv. Mater., 22, E67 (2010).
    [124] R. Navamathavan, E. J. Yang, J. H. Lim, D. K. Hwang, J. Y. Oh, J. H. Yang, J. H. Jang, and S. J. Park, “Effects of Electrical Bias Stress on the Performance of ZnO-Based TFTs Fabricated by RF Magnetron Sputtering”, J. Electrochem. Soc., 153, G385 (2006).
    [125] M. S. Oh, K. Lee, J. H. Song, B. H. Lee, M. M. Sung, D. K. Hwang, and S. Im, “Improving the Gate Stability of ZnO Thin-Film Transistors with Aluminum Oxide Dielectric Layers”, J. Electrochem. Soc., 155, H1009 (2008).
    [126] S. J. Lim, J. M. Kim, D. Kim, S. Kwon, J. S. Park, and H. Kim, “Atomic Layer Deposition ZnO:N Thin Film Transsitor: The Effects of N concentration on the device properties”, J. Electrochem. Soc., 157, H214 (2010).
    [127] Y. S. Choi, J. W. Kang, D. K. Hwang, and S. J. Park, “Recent Advances in ZnO-Based Light-Emitting Diodes”, IEEE Trans. Electron Devices, 57, 26 (2010).
    [128] H. C. Cheng, C. F. Chen, and C. Y. Tsay, “Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method”, Appl. Phys. Lett., 90, 012113 (2007).
    [129] S. Fujihara, C. Sasaki, and T. Kimura, “Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films”, J. Eur. Ceram. Soc., 21, 2109 (2001).
    [130] C. Li, Y. Li, Y. Wu, B. S. Ong, and R. Loutfy, “Fabrication conditions for solution- processed high-mobility ZnO thin-film transistors”, J. Mater. Chem., 19, 1626 (2009).
    [131] C. J. Ku, Z. Duan, P. I. Reyes, Y. Lu, Y. Xu, C. L. Hsueh, and E. Garfunkel, “Effects of Mg on the electrical characteristics and thermal stability of MgxZn1−xO thin film transistors ”, Appl. Phys. Lett., 98, 123511 (2011).
    [132] H. Sawada, R. Wang, A. W. Sleight, “An Electron Density Residual Study of Zinc Oxide”, J. Solid State Chem., 122, 148 (1996).
    [133] J. Kanicki and S. Martin, “in Thin-Film Transistors”, C. R. Kagan and P. Andry, Editors, p. 87, Marcel Dekker, New York (2003).
    [134] M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, “Surface characterization of transparent conductive oxide Al-doped ZnO films”, J. Cryst. Growth, 220, 254 (2000).
    [135] Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process ”, Appl. Phys. Lett., 97, 233502 (2010).
    [136] J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors ”, Appl. Phys. Lett., 93, 093504 (2008).
    [137] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, 432, 488 (2004).
    [138] C. Y. Lin, C. W. Chien, C. H. Wu, H. H. Hsieh, C. C. Wu, Y. H. Yeh, C. C. Cheng, C. M. Lai, and M. J. Yu, “Top-gate Staggered a-IGZO TFTs Adopting the Bi-layer Gate Insulator for Driving AMOLED”, IEEE Tran. Electron Devices, 59, 1701 (2012).
    [139] Y. H. Tai, L. S. Chou, H. L. Chiu, and B. C. Chen, “Three-Transistor AMOLED Pixel Circuit With Threshold Voltage Compensation Function Using Dual-Gate IGZO TFT”, IEEE Electron Device Lett., 33, 3 (2012).
    [140] H. H. Hsieh, H. H. Lu, H. C. Ting, C. S. Chuang, C. Y. Chen, and Y. Lin, “Development of IGZO TFTs and their applications tonext‐generation flat‐panel displays”, Journal of Information Display, 11, 160 (2011).
    [141] C. Kilic¸ and A. Zunger, “Origins of coexistence of conductivity and transparency in SnO2”, Phys. Rev. Lett., 88, 095501-1 (2002).
    [142] W. H. Jeong, G. H. Kim, H. S. Shin, B. D. Ahn, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon, and S. Y. Lee, “Investigating addition effect of hafnium in InZnO thin film transistors using a solution process”, Appl. Phys. Lett., 96, 093503 (2010).
    [143] J. S. Park, K. S. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, “Novel ZrInZnO Thin-film Transistor with Excellent Stability”, Adv. Mater., 21, 329 (2009).
    [144] E. Chong, Y. S. Chun, and S. Y. Lee, “Amorphous silicon–indium–zinc oxide semiconductor thin film transistors processed below 150 °C”, Appl. Phys. Lett., 97, 102102 (2010).
    [145] H. C. Cheng, and C. Y. Tsay, “Flexible a-IZO thin film transistors fabricated by solution processes”, J. Alloy. Compd., 507, L1 (2010).
    [146] C. Y. Koo, K. Song, T. Jun, D. Kim, Y. Jeong, S. H. Kim, J. Ha, and J. Moon, “Low Temperature Solution-Processed InZnO Thin-Film Transistors”, J. Electrochem. Soc., 157, J111 (2010).
    [147] C. G. Choi, S. J. Seo, and B. S. Bae, “Solution-Processed Indium-Zinc Oxide Transparent Thin-Film Transistors”, Electrochem. Solid State Lett., 11, H7 (2008).
    [148] S. Lee, H. Park, and D. C. Paine, “A study of the specific contact resistance and channel resistivity of amorphous IZO thin film transistors with IZO source–drain metallization”, J. Appl. Phys., 109, 063702 (2011).
    [149] B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, T. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, and S. Y. Chu, “Antireflective and Radiation Resistant ZnO Thin Films for the Efficiency Enhancement of GaAs Photovoltaics”, J. Electrochem. Soc., 158, H267 (2011).
    [150] B. Y. Su, S. Y. Chu, Y. D. Juang, M. C. Lin, C. C. Chang, and C. J. Wu, “Efficiency Enhancement of GaAs Photovoltaics Due to Sol-Gel Derived Anti-Reflective AZO Films”, J. Electrochem. Soc., 159, H312 (2012).
    [151] B. Y. Su, S. Y. Chu, Y. D. Juang, “Improved Electrical and Thermal Stabilityof Solution-Processed Li-Doped ZnO Thin-Film Transistors”, IEEE Trans. Electron Devices, 59, 3 (2012).
    [152] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, and Y. H. Tai, “Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors ”, Appl. Phys. Lett., 98, 152109 (2011).
    [153] K. Remashan, D. K. Hwang, S. D. Park, J. W. Bae, G. Y. Yeom, S. J. Park, and J. H. Jang, “Effect of N2O Plasma Treatment on the Performance of ZnO TFTs”, Electrochem. Solid State Lett., 11, H55 (2008).
    [154] M. Born, and E. Wolf, “Principles of Optics”, Pergamon Press, Oxford (1987).
    [155] H. Hiramatsu, W.-S. Seo and K. Koumoto, “Electrical and Optical Properties of Radio-Frequency-Sputtered Thin Films of (ZnO)5In2O3”, Chem. Mater., 10, 3033 (1998).
    [156] J. He, B. Tan, Y. Su, S. Yang, and Q. Wei, “XPS Analysis of ZnO thin Films Obtained by Pulsed Laser Deposition”, Advanced Materials Research, 383, 6293 (2012).
    [157] Z. G. Wang, X. T. Zu, S. Zhu and L. M. Wang, “ Green luminescence originates from surface defects in ZnO nanoparticles”, Physica E., 35, 199 (2006).
    [158] M. G. Kim, M. G. Kanatzidis, A. Facchetti and T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing”, Nat. Mater., 17, 382 (2011).
    [159] J. Raja, K. Jang, N. Balaji, W. choi, T. T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors ”, Appl. Phys. Lett., 102, 083505 (2013).
    [160] J. S. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, and Y. G. Mo, “The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors”, Appl. Phys. Lett., 95 (2009).
    [161] M. H. Choi, M. Mativenga, D. Geng, D. Y. Kim, J. Jang, “A full-swing a-IGZO TFT based inverter with a top-gate-bias-induced depletion load”, IEEE Electron Device Lett., 32, 8 (2011).
    [162] K. H. Ji, J. I. Kim, Y. G. Mo, J. H. Jeong, S. Yang, C. S. Hwang, S. H. K. Park, M. K. Ryu, S. Y. Lee, J. K. Jeong, “Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With SiNx and SiO2 Gate Dielectrics”, IEEE Electron Device Lett., 31, 12 (2010).
    [163] C. Y. Tsay, K. S. Fan, S. H. Chen, C. H. Tsai, “Preparation and characterization of ZnO transparent semiconductor thin films by sol–gel method”, J. Alloy. Compd., 495, 126 (2010).
    [164] A. Thakur, S. J. Kang, J. Y. Baik, H. Yoo, I. J. Lee, H. K. Lee, S. Jung, J. Park, H. J. Shin, “Blue shift in the optical band gap of amorphous Hf–In–Zn–O thin films deposited by RF sputtering”, J. Alloy. Compd., 525, 172 (2012).
    [165] Y. Orikasa, N. Hayashi, S. Muranaka, “Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by rf magnetron sputtering ”, J. Appl. Phys., 103, 113703 (2008).
    [166] Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, and S. Li, “Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel ”, Appl. Phys. Lett., 84, 2685 (2004).
    [167] G. H. Kim, W. H. Jeong, B. D. Ahn, H. S. Shin, H. J. Kim, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon, and S. Y. Lee, “Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors ”, Appl. Phys. Lett., 96, 163506 (2010).
    [168] Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, “Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy”, J. Appl. Phys., 95, 11 (2004).
    [169] J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and H. P. David Shieh, “Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy”, IEEE Tran. Electron Devices, 58, 4 (2011).
    [170] C. Y. Wu, H. C. Cheng, C. L. Wang, T. C. Liao, P. C. Chiu, C. H. Tsai, C. H. Fang, and C. C. Lee, “Reliability improvement of InGaZnO thin film transistors encapsulated under nitrogen ambient”, Appl. Phys. Lett., 100, 152108 (2012).
    [171] J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors”,Appl. Phys. Lett., 93, 093504 (2008).
    [172] Y. C. Chen, P. C. Kao, Y. C. Fang, H. H. Huang, and S. Y. Chu, “How the surface energy of ultra-thin CuF2 film as anode buffer layer affect the organic light-emitting devices?”, Appl. Phys. Lett., 98, 263301 (2011).
    [173] G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, “Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor”, J. Electrochem. Soc., 156, H7 (2009).
    [174] C. Bae, D. Kim, S. Moon, T. Choi, Y. Kim, B. S. Kim, J. S. Lee, H. Shin, and J. Moon, “Aging Dynamics of Solution-Processed Amorphous Oxide Semiconductor Field Effect Transistors”, ACS Appl. Mater. Interfaces, 2, 626 (2010).

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE