| 研究生: |
莊銘倫 Chuang, Ming-Lun |
|---|---|
| 論文名稱: |
高風能占比對台電彰濱區域系統衝擊分析 System Impact Analysis of High Wind-Power Penetration in ChangHua Coastal Area |
| 指導教授: |
張簡樂仁
Chang-Chein, Le-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 高風能占比 、系統衝擊分析 、STATCOM |
| 外文關鍵詞: | high wind power penetration, system impact analysis, STATCOM |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用PSS/E 軟體對2025 年和2026 年風能高佔比情況下台灣電網結構的彰化沿海地區系統進行模擬,並將模擬結果與電壓操作標準進行交叉檢驗。
為了順利在模擬中進行電壓穩定性分析,風能輸出的升降效應由抽蓄機組針對風能輸出的升降效應進行實功補償。為了實現實功補償的機組排程,本研究採用Matlab 優化工具計算抽蓄機組的抽蓄狀態轉移,以密切補償風能的MW級輸出的升降趨勢。為了將電壓穩定在操作標準內,也對靜態同步補償器(STATCOM)的模型參數進行了最佳化。
模擬結果顯示,經過微調參數的STATCOM 可以有效提高彰工及永興匯流排三相故障和風能輸出介於裝機容量的6% 到65%之間變化的電壓穩定性。
This research adopts PSS/E software to simulate power system of the Changhua coastal area with high penetration of wind energy in the year of 2025 and 2026. The simulation results are cross-checked with the voltage operating standards.
To perform the voltage stability analysis in the simulation, the ramping of the wind energy output should be compensated by the pumped-storage unit. The Matlab optimization tool is used to calculate the state transition of the pumped-storage unit, in order to closely compensate the megawatt ramp-up and ramp-down trend of wind energy. To stabilize the voltage within the operating standard, model parameters of the static synchronous compensator (STATCOM)
is optimized.
Simulation results show that the finely tuned STATCOM can effectively enhance voltage stability under the three-phase fault at the Changgong H (Bus2371) and Yongxing H (Bus5833) buses as well as the case of wind ramp conditions from 6 percent to 65 percent of the installed capacity.
[1] 台 灣電力公司. (2021, Jan 4). “ 歷史與發展. ” [Online]. Available: https://www.taipower.com.tw/tc/page.aspx?mid=33#33-02。
[2] 經 濟 部 能 源 局, “能源轉型白皮書(核定本). ” 2020 Nov. Available: https://energywhitepaper.tw/pdf/1091118_能源轉型白皮書核定本.pdf。
[3] IRENA, “Renewable capacity highlights.” April. 11, 2022.
[4] IEA, “Renewables 2021 Analysis and forecast to 2026(revised version).” Dec.
2021.
[5] IEA, “World Energy Outlook 2021(revised version).” Dec. 2021.
[6] 經濟部能源局. “離岸風力發電規劃場址申請作業要點.” July 2, 2015.
Available: https://www.moeaboe.gov.tw/ECW/main/Law/wHandEditorFile.ashx?file_id=2399。
[7] 吳進忠, “再生能源併聯運轉對電力調度的挑戰與機會, 再生能源併聯運轉研討會, 臺北: 財團法人中技社, Aug. 8, 2018, pp. 3, 8.
[8] 吳進忠, 鄭宇軒, 大量再生能源併網的衝擊與電力調度因應策略,” 中國工程師學會專題報導93 卷01 期, Mar. 2020.
[9] IRENA. (2022), “Grid codes for renewable powered systems,” International Renewable EnergyAgency, Abu Dhabi. ISBN: 978-92-9260-427-1.
[10]台灣電力公司, “台灣電力股份有限公司輸電系統規劃準則.” Nov. 3, 2020.
[11]台灣電力公司, “台灣電力股份有限公司再生能源發電系統併聯技術要點.” Nov. 23, 2021.
[12]台灣電力公司, “台灣電力股份有限公司電力調度要點.” Feb. 23, 2021.
[13]姚竺君, “西門子電力技術服務國際公司動態分析短期課程.” 行政院及所屬各機關出國報告, Dec 8, 2014.
[14]SIEMENS Power Technologies International. “PSS/E 34.9.1 Program Application Guide Volume 2.” Oct. 2021.
[15]SIEMENS Power Technologies International. “PSS/E Model Library.” Oct. 2021.
[16]PowerWorld Corporation. (2022, June 16). “Exciter and Governor modeling.” [Online]. Available: https://www.powerworld.com/files/D04ExcitersGovernors.pdf
[17]WECC. (2021, Aug 26). “Generic Static Var System Models for the Western
Electricity Coordinating Council.” [Online] Available: https://www.wecc.org/Reliability/WECC-Static-Var-System-Modeling-Aug-2011.pdf
[18]IEEE. “IEEE Guide for Specification of Transmission Static Synchronous Compensator (STATCOM) Systems,” IEEE Std 1052TM-2018.
[19]ESIG. (2022, July 21). “WT4-Generic Wind Model.” [Online]. Available: https://www.esig.energy/wiki-main-page/wt4-generic-wind-model/#cite_ref-PSSE_1-0