簡易檢索 / 詳目顯示

研究生: 林彥廷
Lin, Yan-Ting
論文名稱: 以實驗探討土石流底床在侵蝕堆積時之孔隙水壓
Experimental study on the basal pore-fluid pressure of debris flows during deposition or erosion
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 土石流孔隙水壓靜水壓動床條件匍匐作用
外文關鍵詞: Debris flow, Pore-fluid pressure, Hydrostatic pressure, Erodible bed, Creeping motion
相關次數: 點閱:85下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目地在於探討土石流於堆積侵蝕時之孔隙水壓變化,並配合土石流理論找出影響孔隙水壓變化之關鍵機制及影響因子。本文研究方法為利用小尺度流槽實驗量測土石流底床之孔隙水壓並搭配高速攝影機拍攝即時流況變化,並藉由粒子影像測速法(Digital Particle Image Velocimetry,DPIV)獲取其速度場資料。
    土石流可視為土砂顆粒與水的混合流體,受重力驅動在坡面由高處往低處流動。探討顆粒間孔隙流體所產生的壓力有助於瞭解土石流內部應力與土石流流動變化,而土石流內部應力除了土砂顆粒與水各自的應力與物體力外,還有土砂顆粒與水之間的交互作用力,包含浮力、黏滯阻力等。這些力作用的變化皆會造成土石流產生不同的流況變化,因此本文將以此為基礎分析實驗量測之土石流在堆積與侵蝕時底床孔隙水壓力變化。
    在剛性底床條件下,實驗結果顯示除了水面高程提供的孔隙水壓外,流動顆粒會產生額外的孔隙水壓;在可侵蝕底床條件下,由於底床有一層可變動的堆積體,會受到上方流場流動而產生匍匐作用,造成底床表層緩慢移動的現象,因此除了水面高程以及流動顆粒外,因匍匐作用產生移動的底床顆粒也會提供孔隙水壓。本文提出其匍匐作用與流場的流動深度、速度,且與動床底床介質交換有關。經相關的實驗數據比較探討後可得知匍匐作用所產生之孔隙水壓與上方整體流動層的質量流率和動量傳輸成線性相關。
    本研究之成果顯示了在對於土石流孔隙水壓探討時,相比於傳統的靜水壓假設,土砂與流體間的交互作用為不可忽略的因素。

    The current study aims at investigating the basal pore-fluid pressure of debris flows, especially when deposition or erosion is taking place. A series of experiments was designed and performed in a narrow channel, where the basal pore water pressure of sand-water mixture was measured. Simultaneously, a non-intrusive velocity measuring technique, Digital Particle Image Velocimetry (DPIV), was applied in this study. According to the bed condition, two cases were taken into account: one is rigid bed and the other one is erodible bed. In the case of Rigid bed, extra basal pore-fluid pressure is measured which is generated by the suspending sediments. In the Erodible bed case, additional extra pore-fluid pressure is identified, which is suspected to be caused by the creeping motion at the bottom. This additional extra pore-fluid pressure is found also during the process of deposition and erosion. The additional extra pore-fluid pressure, caused by creeping motion, can be assessed by mass flow rate and bed-sediment entrainment above the bed. In addition to the assumption of hydrostatic pressure, the results of both cases reveal that the extra pore-fluid pressure of debris flows plays a non-negligible role.

    摘要 I 誌謝 X 目錄 XI 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 研究方法 4 1.4 文獻回顧 4 1.4.1 水躍 4 1.4.2 土石流 8 1.4.3 孔隙水壓 11 1.5 本文架構 12 第二章 土石流理論 13 2.1 Egashira et al.(1997) 13 2.2 Pudasaini (2012) & Meng and Wang (2016) 17 2.3 總結 21 第三章 實驗規劃以及分析方法 22 3.1 實驗儀器配置 22 3.2 粒子影像測速法(DPIV) 30 3.2.1 速度場分析步驟 32 3.3 資料擷取系統(DAQ) 36 3.3.1 硬體設備 37 3.3.2 軟體及操作介面 38 3.3.3 儀器連結與操作 40 3.4 感測器與校正檢定 41 3.5 影像層面定義 45 3.6 實驗整合與實驗代號 49 第四章 實驗結果 51 4.1 水砂流 51 4.1.1 實驗步驟 51 4.1.2 實驗流況 52 4.1.3 層面與孔隙水壓 53 4.2 水躍 55 4.2.1 實驗步驟 55 4.2.2 實驗流況 56 4.2.3 層面與孔隙水壓 57 4.3 堰前加砂 61 4.3.1 實驗步驟 61 4.3.2 實驗流況 62 4.3.3 層面與孔隙水壓 66 4.4 結果與討論 70 4.1.1 流動顆粒生成之孔隙水壓力 70 4.1.2 匍匐作用之孔隙水壓力 80 第五章 結論與建議 94 參考文獻 96

    [1] Armenio, V., Toscano, P., & Fiorotto, V. (2000), “The effects of a negative step in pressure fluctuations at the bottom of a hydraulic jump.” J. of Hydraulic. Res., 38(5): 359-368.
    [2] Bardou, E., Delaloye, E. (2004), “Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments.” Nat. Hazards Earth Syst Sci., 4, pp. 519-530.
    [3] Blair, T. C. & McPherson, J. G. (1994b), “Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies.” J. Sedim. Res., 64, 451-490.
    [4] Chanson, H. (2010), “Convective transport of air bubbles in strong hydraulic jumps.”, International Journal of Multiphase Flow, 36 (10), pp. 798-814.
    [5] Chen, C. L. (1988), “Generalized Viscoplastic Modeling of Debris Flow.” Jour.HydraulicEng. Vol.114, No3, 237-257.
    [6] Chow, V. T. (1959), “Open channel hydraulics.” McGraw-Hill B Co. 728.
    [7] Denlinger, R. P., Iverson, R. M. (2001), “Flow of variably fluidized granular material across three-dimensional terrain: 2. Numerical predictions and experimental tests.” J. Geophys. Res. 106, 553-566.
    [8] Drew, D. A. (1983), “Mathematical Modeling of Two-Phase Flow.” Annu Rev Fluid Mech. 15(1):261-291.
    [9] Egashira, S., Ashida, K., Yajima, H., Takahama, J. (1989), “Constitutive Equation of Debris Flow.” Ann. Disaster Prevention Research Institute, Kyoto Univ. (No. 32, B-2), pp. 487-501(in Japanese).
    [10] Egashira, S., Miyamoto, K., & Itoh, T. (1997), “Constitutive equations of debris flow and their applicability.” Proceedings of the 1st International Conference on Debris-Flow Hazards Mitigation, 340-349.
    [11] Egashira, S., N. Honda, & T. Itoh (2001), “Experimental study on the entrainment of bed material into debris flow.” Phys. Chem. Earth, 26,645–650.
    [12] Farhoudi, J., & Narayanan, R. (1991), “Force on slab beneath hydraulic jump.” J. Hydr. Engrg., ASCE, 117(1), 64–81.
    [13] Fawer, C. (1937), “Study of some steady flows with curved streamlines.” Thesis. Université de Lausanne. La Concorde, Lausanne, Switzerland [in French].
    [14] Fernandez-Nieto, E. D., Bouchut, F., Bresch, D., Castro Diaz, M. J., and Mangeney, A. (2008), “A new Savage-Hutter type model for submarine avalanches and generated tsunami. ” J. Comput. Phys. 227, 7720–7754.
    [15] Fiorotto, V., Rinaldo, A. (1992), “Fluctuating Uplift and Lining Design in Spillway Stilling Basins.” Journal of Hydraulic Engineering. Vol118(4).
    [16] George, D. L., & Iverson, R. M. (2011), “A two-phase debris-flow model that includes coupled evolution of volume fractions , granular dilatancy , and pore-fluid pressure.” Ital J Eng Geol Environ. 415-424.
    [17] Hotta, N. (2011), “Pore water pressure distributions of granular mixture flowin a rotating mill.” Debris-Flow Hazards Mitigation: Mechanics,Prediction and Assessment, edited by: Genevois, R., Hamilton,D. L., and Prestininzi, A., Casa Editrice Universita La Sapienza, Roma, 319–330.
    [18] Hotta, N. (2012), “Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel.” Nat. Hazard s Earth Syst. Sci.,12, 2499-2505.
    [19] Hu, K. H., Wei, F. Q., Hong, Y., Li, X. Y. (2006), “Field measurement of impact force of debris flow.” Chinese Journal of Rock Mechanics and Engineering 25(s1): 2813–2819 (in Chinese).
    [20] Huang, H., Fiedler, H., & Wang, J. (1993), “Limitation and improvement of piv, part ii: Particle image distortion a novel technique.” Experiments in Fluids 15, 263–273.
    [21] Huang, H. P., Yang, K. C., & Lai, S. W. (2007), “Impact force of debris flow on filter dam.” Geophysical Research Abstracts. European GeosciencesUnion-General Assembly. Vienna, Austria, 03218.
    [22] Huang, C. C., Ju, Y. J., Lee, J. L., & Hwu, L. K. (2009), “Internal soil moisture and piezometric responses to rainfall-induced shallow slope failures.” Journal of Hydrology 370, 39–51.
    [23] Hunt, B. (1994), “Newtonian Fluid Mechanics Treatment of Debris Flows and Avalanches.” J.Hydraulic Eng.ASCE, Vol.120, No12, 1350–1363.
    [24] Hutter, K., Svendsen, B., & Rickenmann, D. (1996), “Debris flow modelling: A review, Continuum Mech.“, Thermodyn 8, 1–35.
    [25] Ishii, M., & Hibiki, T. (2006), “Thermo-Fluid Dynamics of Two-Phase Flow. “ Springer, New York.
    [26] Iverson, R. M. (1997), “The physics of debris flows.” Rev. Geophys. 35, 245–296.
    [27] Iverson, R. M. (2005), “Regulation of landslide motion by dilatancy and pore pressure feedback.” J Geophys Res Earth Surf. 110(2).
    [28] Iverson, R. M., Logan, M., LaHusen, R. G., & Berti, M. (2010), “The perfect debris flow? Aggregated results from 28 largescale experiments.”, J. Geophys. Res-Earth., 115.
    [29] Iverson, R. M. (2012), “Elementary theory of bed‐sediment entrainment by debris flows and avalanches.”, J. Geophys. Res. 117.
    [30] Iverson, R. M., George, D. L. (2014), “A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis.” Proc R Soc A 470:20130819.
    [31] Jambunathan, K., Ju, X. Y., Dobbins, B. N. & Ashforth-Frost, S. (1995), “An improved cross correlation technique for particle image velocimetry.” Measurement Science and Technology 6, 507–514.
    [32] Keane, D. & Adrian, R. J. (1992), “Theory of cross-correlation analysis of PIV images.” Applied Scientific Research, 49, 191-215.
    [33] Kolev, N. I. (2007), “Multiphase Flow Dynamics: Thermal and Mechanical Interactions.” 3rd ed., Springer, New York.
    [34] Kytoma, H. K. (1991), “Viscous particle interactions and their effect on kinematic wave propagation,” Chem. Eng. Commun., 105(1), 27–42.
    [35] Lopardo, R. A., & Henning, R. E. (1985), “Experimental advances on pressure fluctuations beneath hydraulic jumps.” Proc., 21st Congress, International Association of Hydraulic Research, Melbourne, Australia, Vol.3, 633-638.
    [36] Lourenco, S. D. N., Sassa, K., & Fukuoka, H. (2006), “Failure process and hydrologic response of a two layer physical model: implications for rainfall-induced landslides.” Geomorphology 73, 115–130.
    [37] Major, J. J. (2000), “Gravity-driven consolidation of granular slurries: implications for debris-flow deposition and deposit characteristics.” J Sediment Res.70(1):64-83.
    [38] Mason, H. B., Yeh, H. (2016), “Sediment Liquefaction: A Pore‐Water Pressure Gradient Viewpoint.”, Bulletin of the Seismological Society of America, 106(4).
    [39] McArdell, B. W., Bartelt, P., & Kowalski, J. (2007), “Field observations of basal forces and fluid pore pressure in a debris flow.” Geophys Res Lett. 34(7).
    [40] Meng, X., Wang, Y. (2016), “Modelling and numerical simulation of two-phase debris flows.” Acta Geotech. 2016;11(5):1027-1045.
    [41] Papa, M., Egashira, S., Itoh, T. (2004), “Critical conditions of bed sediment entrainment due to debris flow.” Nat Hazards Earth Syst Sci. 4(3):469-474.
    [42] Peng, C., Chao, Z., & Yu, L. (2015), “Experimental analysis on the impact force of viscous debris flow.” Earth Surf Process Landforms 40(12):1644–1655.
    [43] Pitman, E. E. & Le, L. (2005), “A two-fluid model for avalanche and debris flows.” Philos Trans R Soc A Math Phys Eng Sci. 363(1832):1573-1601.
    [44] Prochaska, J. J., Spring, B., & Nigg, C. R. (2008), “Multiple health behavior change research: An introduction and overview.” Prev. Med., 46, 181-188.
    [45] Pudasaini, S. P., & Hutter, K. (2003), “Rapid shear flows of dry granular masses down curved and twisted channels.” J. Fluid Mech. 495, 193–208.
    [46] Pudasaini, S. P. (2011), “Some exact solutions for debris and avalanche flows.“ Phys. Fluids, 23(4), 043301.
    [47] Pudasaini, S. P. (2012), “A general two-phase debris flow model.” J. Geophys. Res. 117, F03, 1-28.
    [48] Qingchao, L., Drewes, U. (1994), “Turbulence characteristics in free and forced hydraulic jumps.” J. Hydr. Res., 32(6), 877–898.
    [49] Riazi, R., Bejestan, M. S. (2014), “Analysis location of pressure fluctuation in hydraulic jump over roughened bed with negative step.” Bulletin of Environment, Pharmacology and Life Sciences, Vol 3(4), 103-110.
    [50] Richard, G. L., & Gavrilyuk, S. L. (2013), “The classical hydraulic jump in a model of shear shallow-water flows.” J. Fluid Mech. 725, 492–521.
    [51] Rouse, H., Siao, T. T., & Nagaratnam, S. (1959), “Turbulence characteristics of the hydraulic jump.” Trans. ASCE, 124: 926–966.
    [52] Savage, S. B., and Hutter, K. (1989), “The motion of a finite mass of granular material down a rough incline.” J. Fluid Mech.,199, 177–215.
    [53] Scarano, F., & Riethmuller, M. L. (2000), “Advances in iterative multigrid piv image processing.” Experiments in Fluids 29, S051–S060.
    [54] Stancanelli, L. M., Lanzoni, S., & Foti, E. (2015), “Propagation and deposition of stony debris flows at channel confluences.” Water Resour Res 51:5100–5116.
    [55] Suwa, H., Okud, S., Yokoya, K. (1973), “Observation system on rocky mudflow.” Bulletin of the Disaster Prevention Research Institute 23(3–4) 59–73.
    [56] Tai, Y. C., Cheng, C. K., & Lai, G. C. (2016), “An Approach to Adaptive Correction Factors in Depth-Averaged Model for Debris Flows. ” EGU General Assembly. p. 11806.
    [57] Takahama, J., Fujita, Y., & Yoshino, K. (2004), “Two-Dimensional Numerical Simulation Model for Unifying Debris Flow and Sediment Sheet Flow.”, Annual Journal of Hydroscience and Hydraulic Engineering, 48: 919-924 (in Japanese).
    [58] Takahashi, T., (1977), “An occurrence mechanism of mud-debris flows, and their characteristics in motion.” Annuals, DPRI, 23B2, pp. 405–435 (in Japanese).
    [59] Takahashi, T., (1980), “Debris Flow on Prismatic Open Channel.” Journal of the Hydraulics Division, 1980, Vol. 106, Issue 3, Pg. 381-396.
    [60] Takahashi, T. (2007), “Debris Flow: Mechanics, Prediction and Countermeasures.” Taylor and Francis, New York.
    [61] Talling, P. J., Amy, L. A. & Wynn, R. B., (2007), “New insights into the evolution of large volume turbidity currents; comparison of turbidite shape and previous modelling results.” Sedimentology 54, 737–769.
    [62] Thielicke, W., Stamhuis, E. (2014), “PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB.” Journal of open research software, 30, 2-30.
    [63] Wang, G., Sassa, K. (2003), “Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content.” Eng Geol. 69(1-2):109-125.
    [64] Wang, H., Murzyn, F. & Chanson, H. (2015), “Interaction between free-surface, two-phase flow and total pressure in hydraulic jump.” Exp Therm Fluid Sci., 64:30-41.
    [65] Yan, Z., Zhou, C. & Lup, S. (2006), “Pressure fluctuations beneath spatial hydraulic jumps.” J. Hydrodyn. 18(6): 723-726.
    [66] Zanuttigh, B., Lamberti, A. (2006), “Experimental analysis of the impact of dry avalanches on structures and implication for debris flows.”, Journalof Hydraulic Research 44(4): 522–534.
    [67] 賴冠岑 (2017),「窄渠中表面波以及水砂混合流體侵蝕率之探討」,國立成功大學水利及海洋工程學系碩士論文.
    [68] 賴悅仁 (2018),「實驗水利學」課堂簡報,國立成功大學水利及海洋工程學系.
    [69] 邱永芳等 (2010),「橋墩振動與基礎孔隙水壓力即時監測系統整合應用研究」,交通部運輸研究所.
    [70] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司.
    [71] 姚凱超等 (2013),「自動量測技術」,全華圖書.

    無法下載圖示 校內:2019-06-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE