| 研究生: |
林聖雄 Lin, Sheng-Hsiung |
|---|---|
| 論文名稱: |
一個在殘值放大時將負載分離之具有管線式架構的逐漸趨近式類比數位轉換器 A Pipelined SAR ADC with Loading-Separating Technique for Residue Amplification |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 類比數位轉換器 、管線式 、逐漸趨近式類比數位轉換器 、具有管線式架構的逐漸趨近式類比數位轉換器 |
| 外文關鍵詞: | ADC, pipelined, SAR ADC, pipelined SAR ADC |
| 相關次數: | 點閱:118 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先進製程有利於元件的操作速度(頻寬),因此,具有高度數位化特性以及低功率消耗的逐漸趨近式類比數位轉換器成為中低速、中高解析度應用的主流。另一方面,管線式類比數位轉換器適合高速、高解析度的應用,但是,傳統的管線式類比數位轉換器由數個運算放大器所組成,消耗大量的功率。近幾年來,一種結合逐漸趨近式類比數位轉換器以及管線式類比數位轉換器優點的混合型架構日益受到重視。本篇論文實現一個十二位元每秒取樣五千萬次具有管線式架構的逐漸趨近式類比數位轉換器。
為了降低乘積數位類比轉換器的輸出負載,此論文提出一個將輸出負載分離至兩個放大時序的技巧;此外,還提出一個具有分離路徑放大的乘積數位類比轉換器用以提升運算放大器的增益以及頻寬。藉由提出的兩項技巧,運算放大器的設計困難度以及功率消耗都被降低了。這個設計使用台積電90奈米1P9M互補式金氧半製程來實現晶片,其核心電路的面積為590 × 450 (微米平方)。量測到的差動非線性以及積分非線性分別在0.62/-0.84 LSB與2.27/-1.67 LSB之間,在每秒五千萬次的取樣頻率之下,得到最大的訊號雜訊失真比為63.56分貝且有效位元頻寬為20百萬赫茲,由量測結果顯示在我們提出的兩項技巧幫助下,此類比數位轉換器消耗了2.17毫瓦特,每次資料轉換消耗的能量為44飛焦耳。
The advanced process favors the operation speed (bandwidth) of the device. Thus, the low-to-medium speed and medium-to-high resolution successive approximation (SAR) analog-to-digital converters (ADCs) are becoming popular because their highly digital characteristic and low power consumption. On the other hand, the pipelined ADCs are suitable for high-speed and high-resolution applications. But a traditional pipelined ADC consumes much power because it consists of several operational amplifiers (op-amps). A hybrid architecture combines the advantages of SAR and pipelined ADCs attracts much attention in recent years. This thesis implements a 12-bit 50-MS/s pipelined SAR ADC.
A loading-separating technique is proposed to separate the total loading of multiplying digital-to-analog converter (MDAC) into two amplifying phases. Thus the MDAC output loading is reduced. Furthermore, a split-path amplification MDAC is proposed to enhance the gain and bandwidth of the op-amp. The design difficulty and power consumption of the op-amp are reduced by the proposed two techniques. This work is fabricated in TSMC 90-nm 1P9M CMOS technology and occupies 590 × 450 (μm2) active area. The measured DNL and INL are within 0.62/-0.84 LSB and 2.27/-1.67 LSB, respectively. The peak SNDR is 63.56 dB and effective resolution bandwidth (ERBW) is 20 MHz at 50 MHz sampling rate. The measurement results indicate that this ADC consumes 2.17 mW with 44 fJ/conversion-step figure-of-merit (FoM) by the proposed two techniques.
[1] C. Y. Chen, J. Wu, J. J. Hung, T. Li, W. Liu, and W. T. Shih, “A 12-bit 3 GS/s pipeline ADC with 0.4mm2 and 500mW in 40nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 1013-1021, Apr. 2012
[2] C. C. Lee and M. P. Flynn, “A SAR-assisted two-stage pipeline ADC,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859-869, Apr. 2011
[3] International Technology Roadmap for Semiconductors 2011 Edition System Driver
[4] W. Kester, “Which ADC architecture is right for your application ?,” http://www.analog.com/
[5] B. G. Lee, B. M. Min, G. Manganaro, and J. W. Valvano, “A 14-b 100-MS/s pipelined ADC with a merged SHA and first MDAC,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2613-2619, Dec. 2008
[6] J. F. Lin and S. J. Chang, “A 10-bit 60-MS/s low-power pipelined ADC with split-capacitor CDS technique,” IEEE Transaction on Circuits and Systems II, vol. 57, no. 3, pp. 163-167, Mar. 2010
[7] B. Hershberg, S. Weaver, and U. K. Moon, “Design of a split-CLS pipelined ADC with full signal swing using an accurate but fractional signal swing opamp,” IEEE J. Solid-State Circuits, vol. 45, pp. 2623-2633, Dec. 2010
[8] A. M. A. Ali and K. Nagaraj, “Correction of operational amplifier gain error in pipelined A/D converters,” IEEE International Symposium on Circuits and Systems, 2001, vol. 1, pp. 568-571
[9] J. Li and U. K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, pp. 1468-1476, Sep. 2004
[10] B. R. Gregoire and U. K. Moon, “An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain,” IEEE J. Solid-State Circuits, vol. 43, pp. 2620-2630, Dec. 2008
[11] J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H. S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-State Circuits, vol. 41, pp. 2658-2668, Dec. 2006
[12] L. Brooks and H. S. Lee, “A zero-crossing-based 8-bit 200MS/s pipelined ADC,” IEEE J. Solid-State Circuits, vol. 42, pp. 2677-2687, Dec. 2007
[13] L. Brooks and H. S. Lee, “A 12b, 50 MS/s, fully differential zero-crossing based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 44, pp. 3329-3343, Dec. 2009
[14] L. Brooks and H. S. Lee, “A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB,” IEEE International Solid-State Circuits Conference, Feb. 2009, pp. 166-167
[15] I. Ahmed, J. Mulder, and D. A. Johns, “A low-Power capacitive charge pump based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 45, pp. 1016-1027, May 2010
[16] J. Hu, N. Dolev, and B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC using dynamic source follower residue amplification,” IEEE J. Solid-State Circuits, vol. 44, pp. 1057-1066, Apr. 2009
[17] Y. Zhu, C. H. Chan, U. F. Chio, S. W. Sin, S. P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010
[18] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split capacitor DAC mismatch calibration in successive approximation ADC,” IEEE Custom Integrated Circuits Conference, Sep. 2009, pp. 279-282
[19] Y. D. Jeon, Y. K. Cho, J. W. Nam, K. D. Kim, W. Y. Lee, K. T. Hong, and J. K. Kwon, “A 9.15mW 0.22mm2 10b 204MS/s pipelined SAR ADC in 65nm CMOS,” IEEE Custom Integrated Circuits Conference, Sep. 2010, pp. 1-4
[20] S. W. Sin, L. Ding, Y. Zhu, H. G. Wei, C. H. Chan, U. F. Chio, S. P. U, R. P. Martins, and F. Maloberti, “An 11b 60MS/s 2.1mW two-step time-interleaved SAR-ADC with reused S&H,” IEEE ESSCIRC, Sep. 2010, pp. 218-221
[21] Y. Zhu, C. H. Chan, S. W. Sin, S. P. U, R. P. Martins, and F. Maloberti, “A 35 fJ 10b 160 MS/s pipelined-SAR ADC with decoupled flip-around MDAC and self-embedded offset cancellation,” IEEE Asian Solid-State Circuits Conference, Nov. 2011, pp. 61-64
[22] M. Furuta, M. Nozawa, and T. Itakura, “A 10-bit, 40-MS/s, 1.21mW pipelined SAR ADC using single-ended 1.5-bit/cycle conversion technique,” IEEE J. Solid-State Circuits, vol. 46, pp. 1360-1370, Jun. 2011
[23] B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250MS/s 2x interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS,” IEEE International Solid-State Circuits Conference, Feb. 2012, pp. 466-468
[24] H. Y. Lee, B. Lee, and U. K. Moon, “A 31.3fJ/conversion-step 70.4dB SNDR 30MS/s 1.2V two-step pipelined ADC in 0.13μm CMOS,” IEEE International Solid-State Circuits Conference, Feb. 2012, pp. 474-476
[25] C. C. Lee, and M. P. Flynn, “A 12b 50MS/s 3.5mW SAR assisted 2-stage pipeline ADC,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, Jun. 2010, pp. 239-240.
[26] M. Furuta, M. Nozawa, and T. Itakura, “A 0.06mm2 8.9b ENOB 40MS/s pipelined SAR ADC in 65nm CMOS,” IEEE International Solid-State Circuits Conference, Feb. 2010, pp. 382-383
[27] Y. D. Jeon, S. C. Lee, K. D. Kim, J. K. Kwon, and J. Kim, “A 4.7mW 0.32mm2 10b 30MS/s pipelined ADC without a front-end S/H in 90nm CMOS,” IEEE International Solid-State Circuits Conference, Feb. 2007, pp. 456-457
[28] B. G. Lee and R. M. Tsang, “A 10-bit 50 MS/s pipelined ADC with capacitor-sharing and variable-gm opamp,” IEEE J. Solid-State Circuits, vol. 44, pp. 883-890, Mar. 2009
[29] Y. C. Huang and T. C. Lee, “A 10-bit 100-MS/s 4.5-mW pipelined ADC with a time-sharing technique,” IEEE Transaction on Circuits and Systems I, vol. 58 pp. 1157-1166, Jun. 2011
[30] T. B. Cho, and P. R. Gray, “A 10 b, 20 Msample/s, 35mW pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30 pp. 166-172, Mar. 1995
[31] L. Sumanen, M. Waltari, V. Hakkarainen, and K. Halonen, “CMOS dynamic comparators for pipeline A/D converters,” IEEE International Symposium on Circuits and Systems, 2002, vol. 5, pp. 157-160
[32] L. Sumanen, M. Waltari, and K. Halonen, “A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters,” IEEE International Conference on Electronics, Circuits, and Systems, Dec. 2000, pp. 32-35
[33] M. Waltari and K. A. I. Halonen, “1-V 9-bit pipelined switched-opamp ADC,” IEEE J. Solid-State Circuits, vol. 36 pp. 129-134, Jan. 2001
[34] S. H. Lewis, H. S. Fetterman, G. F. Gross, Jr., R. Ramachandran, and T. R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, no. 3, pp. 351-358, Mar. 1992
[35] P. J. Quinn and H. M. van Roermund, “Accuracy limitations of pipelined ADCs,” IEEE International Symposium on Circuits and Systems, May 2005, vol. 3, pp. 1956-1959
[36] S. H. Lewis and P. R. Gray, “A pipelined 5-Msample/s 9-bit analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 954-961, Dec. 1987
[37] J. Carnes and U. K. Moon, “The effect of switch resistance on pipelined ADC MDAC settling time,” IEEE International Symposium on Circuits and Systems, May 2006, pp. 5251-5254
[38] M. Miyahara and A. Matsuzawa, “The effects of switch resistances on pipelined ADC performances and the optimization resistance for the settling time,” IEICE Trans. Electron., vol. E90-C, pp. 1165-1171, Jun. 2007
[39] P. C. Yu and H. S. Lee, “A 2.5-V, 12-b, 5-MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1854-1861, Dec. 1996
[40] D. A. Johns and K. Martin, Analog Integrated Circuit Design. John Wiley & Sons, Inc. 1997
[41] S. W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006
[42] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no.4, pp. 739-747, Apr. 2007
[43] B. P. Ginsburg and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” IEEE International Symposium on Circuits and Systems, May 2005, vol. 1, pp. 184-187
[44] C. C. Liu, S. J. Chang, G. Y. Huang and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010
[45] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS process,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, Jun. 2009, pp. 236-237.
[46] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18μm CMOS,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, Jun. 2010, pp. 241-242.
[47] G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, “10-bit 30-MS/s SAR ADC using switchback switching method,” IEEE Transactions on VLSI Systems, Early Access Articles, 2012.
[48] G. V. d. Plas and B. Verbruggen, “A 150 MS/s 133 μW 7 bit ADC in 90 nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2631-2640, Dec. 2008
[49] T. Jiang, W. Liu, F. Y. Zhong, C. Zhong, and P. Y. Chiang, “Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR-ADC in 40nm-CMOS,” IEEE Custom Integrated Circuits Conference, Sep. 2010, pp. 1-4
[50] B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq, and G. V. d. Plas, “A 2.6mW 6b 2.2GS/s 4-times interleaved fully dynamic pipelined ADC in 40nm digital CMOS,” IEEE International Solid-State Circuits Conference, Feb. 2010, pp. 296-297
[51] Y. Z. Lin, S. J. Chang, Y. T. Shyu, G. Y. Huang, and C. C. Liu, “A 0.9-V 11-bit 25-MS/s binary-search SAR ADC in 90-nm CMOS,” IEEE Asian Solid-State Circuits Conference, Nov. 2011, pp. 69-72
[52] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May 1999
[53] Y. Chiu, P. R. Gray, and B. Nikolic, “A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR,” IEEE J. Solid-State Circuits, vol. 39 pp. 2139-2151, Dec. 2004
[54] S. Kawahito, K. Honda, Z. Liu, K. Yasutomi, and S. Itoh, “A 15b power-efficient pipeline A/D converter using non-slewing closed-loop amplifiers,” IEEE Custom Integrated Circuits Conference, Sep. 2008, pp. 117-120
[55] M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei, “A pseudo-class-AB telescopic-cascode operational amplifier,” IEEE International Symposium on Circuits and Systems, 2004, vol. 1, pp. 737-740
[56] K. Bult and G. J. G. M. Geelen, “A fast-settling CMOS op-amp for SC circuits with 90-dB DC gain,” IEEE J. Solid-State Circuits, vol. 25 pp. 1379-1384, Dec. 1990
[57] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” IEEE Asian Solid-State Circuits Conference, Nov. 2008, pp. 269-272
[58] W. Liu, P. Huang and Y. Chiu, “A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR,” IEEE International Solid-State Circuits Conference, Feb. 2010, pp. 380-381