簡易檢索 / 詳目顯示

研究生: 王士菁
Wang, Shih-Ching
論文名稱: 千里達湖瀝青添加於傳統黏結料 之質流行為
Rheological Behavior of Trinidad Lake Asphalt (TLA) Mixed with Traditional Binders
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 128
中文關鍵詞: 千里達湖瀝青質流行為離析
外文關鍵詞: Trinidad Lake Asphalt, rheological behavior, segregation
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 千里達湖瀝青(TLA)為天然形成之瀝青黏結料,近幾年石油瀝青價格高漲,TLA再度成為新興鋪面材料,本研究探討TLA添加於傳統瀝青之質流性質與化學性質。
    本研究將TLA和傳統黏結料(Pen60/70和Pen85/100)分別依重量百分比1:1、1:2、1:3及1:4摻配,進行基本物性試驗與使用動態剪切質流儀 ( Dynamic Shear Rheometer,DSR)於不同試驗條件下研究瀝青黏結料之質流行為,探討TLA改質瀝青黏度與潛變行為,並將TLA改質瀝青進行凝膠滲透層析儀( Gel Permeation Chromatography, GPC)與傅立葉轉換紅外線光譜儀( Fourier Transform Infrared Spectroscopy, FT-IR)分析瀝青分子大小和化學官能基。
    研究成果顯示瀝青黏結料之複合模數(G*)隨TLA含量增加而上升,相位角(δ)則反之 ,同時可降低老化現象並有助於抵抗車轍,由於TLA含豐富礦物填充料,瀝青黏結料容易產生離析現象。DSR試驗得到TLA改質瀝青黏結料之零剪力黏度(Zero Shear Viscosity, ZSV)、穩態黏度(Steady State viscosity, SSV)與低剪力黏度(Low Shear Viscosity, LSV),三種黏度特性於低頻時皆不隨剪應變率改變且黏度值相近,此區間之瀝青黏結料特性穩定,因此可做為抗車轍指標。GPC試驗結果顯示TLA含量愈多,大分子、小分子與廣分佈指數(Polydispersity Index, PDI)指數愈高;FT-IR試驗結果顯示隨著TLA含量增加,官能基酮與亞砜皆有上升趨勢,說明添加TLA使老化官能基更明顯。

    關鍵字:千里達湖瀝青(TLA) 、質流行為、離析

    Trinidad Lake Asphalt (TLA) is a natural asphalt binder.Because the high prices of petroleum asphalt in recent years, TLA becomes a new paving material once again. This study is discussed the rheological behavior and chemical properties of TLA mixed with traditional binders.
    In this study, the ratio TLA mixed with traditional Binders (Pen60/70 and Pen85/100) by weight percentage are 1:1,1:2,1:3 and 1:4,using basic physical tests and Dynamic Shear Rheometer(DSR) with different experimental conditions to discussed viscosity and creep behavior of TLA modified bitumen, and analysis asphalt molecular size and chemical functional groups by Gel Permeation Chromatography(GPC) and Fourier Transform Infrared Spectroscopy (FT-IR).
    The results indicate the complex modulus(G*) and phase angle(δ) of binders were separately increased and decreased with the rise in TLA content, while reducing the aging phenomenon and improving the resistance of rutting. Because the rich mineral filler of TLA modified bitumen , it is easy to generate segregation phenomenon.
    DSR tests can get the Zero Shear Viscosity ( ZSV),Steady State viscosity (SSV) ,Low Shear Viscosity (LSV) of TLA modified bitumen by DSR tests.Three kinds of viscosity properties at low frequencies are not changed by shear rate and alike, this range with viscosity of the asphalt binder is stable, so it can be used as indicator of resistance to rutting.GPC result shows that the large molecules, small molecules and Polydispersity Index (PDI) were increased with the rise in TLA content ; FT-IR result shows that ketone and sulfoxide were increased with the rise in TLA content, indicating that it is more obvious in aging functional groups with adding TLA.

    Keyword: Trinidad Lake Asphalt (TLA), rheological behavior, segregation.

    摘要………………………………………………………….………………...i Abstract………………………….……………………………......…………iii 誌謝………………………………………………………..…….……………v 目錄…………………………………………………………...…………..…vii 表目錄……………………………………………………….…....…………xii 圖目錄…………………………………………………..……..………...…xiv 第一章 緒論 1.1前言…………………………………………………...………..1-1 1.2研究動機………………………………………………..……..1-3 1.3研究目的………………………………………………..……..1-3 1.4研究範圍………………………………………………...……..1-4 第二章 文獻回顧 2.1概述…………………………………………………..……..…2-1 2.2千里達湖瀝青(Trinidad Lake Asphalt, TLA)……….….……2-2 2.3瀝青特性與組成…………………………………………...…..2-4 2.4千里達湖瀝青之化學組成與物理性質…………..……..……2-8 2.5正交異向性鋼床鈑橋的鋪面…. ……………………..……. 2-10 2.6流動性瀝青混凝土………………………………………...…2-13 2.7 TLA應用於鋪面之績效…………………………..…………2-13 2.8瀝青質流行為…………………………………..……………2-16 2.8.1建立主曲線…………………………………...………2-17 2.8.2黏度……………………………………..……….……2-18 2.8.3瀝青質流模型-複合模數模型…………………....…2-19 2.8.4瀝青質流模型-黏度模型………….…….……..……2-20 2.9潛變行為…….………………………………………..………2-23 第三章 研究計畫 3.1研究方法…………………………………...…………………..3-1 3.2試驗材料與拌和程序…………………………...……………..3-3 3.2.1試驗材料…………………………...…………………..3-3 3.2.2拌和保溫設備………………………...………………..3-3 3.2.3 TLA改質瀝青拌和程序……………..………………..3-4 3.3瀝青物性試驗…………………………..….…………………..3-5 3.3.1針入度試驗…………………………………...………..3-5 3.3.2軟化點試驗……………………………………...……..3-5 3.3.3黏度試驗……………………………………...………..3-5 3.3.4滾動薄膜烘箱試驗……………………………...……..3-6 3.3.5薄膜烘箱試驗…………………...……………………..3-6 3.3.6灰分…………………………...………………………..3-6 3.3.7溶解度……………………………...…………………..3-6 3.4動態剪切質流儀( Dynamic Shear Rheometer)試驗…….....3-7 3.5傅立葉轉換紅外線光譜儀( Fourier Transform Infrared Spectroscopy, FT-IR)………………………………………….3-9 3.6凝膠滲透層析儀(Gel Permeation Chromatography, GPC) … …………………………………………..…….….………3-15 3.7瀝青黏結料摻配公式………………………...…….…..……3-18 3.8老化指數………………………….…………...………..……3-19 3.9瀝青溫度敏感性………………….………………...…..……3-19 3.10零剪力黏度(ZSV)決定方法……………..…………...……3-20 3.11符號說明………………….………………..……….....……3-21 第四章 試驗結果與討論 4.1瀝青黏結料物性………………………………..….…………..4-1 4.2 TLA改質瀝青老化前後之性質…………..…….….….….…..4-8 4.3 TLA改質瀝青質流行為………………….…………...……..4-11 4.3.1 TLA改質瀝青G*變化……………………..….……..4-11 4.3.2 TLA改質瀝青相位角變化……………..……..……..4-16 4.3.3 TLA改質瀝青tanδ變化………………...……..…..4-17 4.4 TLA改質瀝青質流參數與鋪面績效之關係…....…………..4-18 4.5 TLA改質瀝青潛變行為…………………….…….…………4-20 4.6零剪力黏度、穩態黏度與低剪力黏度………..……..………4-23 4.6.1零剪力黏度………………………………...…………4-23 4.6.2穩態黏度(SSV)………………………………....……4-25 4.6.3低剪力黏度(LSV)…………………………...…..……4-27 4.6.4 ZSV、SSV與LSV之相對關係…………….………4-29 4.7 TLA改質瀝青離析試驗………………………………...……4-30 4.7.1 TLA改質瀝青軟化點離析試驗………………..….…4-30 4.7.2 TLA改質瀝青質流離析試驗………………...………4-32 4.7.3 TLA改質瀝青質溫度敏感性…………….……..……4-34 4.8質流模型預測……………………………..…………….....…4-35 4.8.1 G*模型預測………………………..………..….....…4-35 4.8.2黏度模型預測……………………..…………….....…4-37 4.9 TLA改質瀝青化學性質…………………..…………….....…4-44 4.9.1 TLA改質瀝青之GPC試驗結果…..…………….....…4-44 4.9.2 TLA改質瀝青之FT-IR試驗結果..………….….......…4-47 第五章 結論與建議…………………………………………...…………..5-1 5.1結論…………………………………………………...………..5-1 5.2建議…………………………………………………...………..5-3 參考文獻………………………………………………..……...…………參-1

    中華鋪面工程學會 (2007)「台灣鋪面(Taipave)之設計與應用實務
    (五)-Guss瀝青混凝土」,桃園。
    李林萍,艾賢臣,阿合買提‧卡德爾 (2010) 「TLA改性瀝青在新疆
    地區道路中的應用研究」,路基工程,第5期,第47-49頁。
    倪建富,賴用滿,沈桓,詹謙 (2005) 「TLA複合改性瀝青混合料路
    用性能研究」,公路交通科技,第22卷,第1期,第13-16頁。
    夏明勝 (2005) 「分析瀝青混凝土之材料與疲勞特性」,國立成功大
    學土木研究所博士論文,台南。
    黃碩偉(2012) 「還原劑添加於回收瀝青混凝土之黏結料性質」,國立
    成功大學土木研究所博士論文,台南。
    陳寧(2012)「TLA改性瀝青混合料AC-20C配合比設計」,江蘇省
    交通廳,第9卷,第1期,第11-15頁。
    陳建旭,黃建中(2009) 「流動性瀝青混凝土(Guss)之配比設計與舖
    築」,台灣公路工程,第35卷,第4期,第2-21頁。
    劉伃芝(2012) 「瀝青膠漿質流行為與轉爐石添加於石膠泥瀝青混凝
    土之工程性質評估」,國立成功大學土木研究所碩士論文,台南。
    蔡明倫(2009)「流動性瀝青混凝土(Guss) 之工程性質」,國立成功
    大學土木研究所碩士論文,台南。
    蔡攀鰲 (2009),「瀝青混凝土」,三民書局,台北。
    American Society for Testing and Materials (2005).Standard Specification for Trinidad Lake Modified Asphalt, ASTM D5710-05.
    American Society for Testing and Materials (2010). Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of AsphaltBinder Using a Dynamic Shear Rheometer1,2, ASTM D7405-10a.
    Cao, W.D., Yao, Z.Y., Liu, S.T., and Cui, X.Z. (2009). “Performance of Composite Modified Asphalt with Trinidad Lake Asphalt used as Waterproofing Material for Bridge Deck Pavement,” Journal of Testing and Evaluation, Vol.37, No.5, pp.1-5.
    Christensen, D.W., and Anderson, D.A. (1992) “Interpretation of Dynamic Mechanical Test Data for Paving Grade Asphalt Cements,” Journal of the Association of Asphalt Paving Technologists, Vol.61, pp.67-116.
    Dickinson, E.J., and Witt, H.P. (1974) “The Dynamic Shear Modulus of Paving Asphalts as a Function of Frequency,” Transactions of the Society of Rheology, Vol.18, No.4, pp.591-606.
    Collop, A.C., Airey, G.D., and Khanzada, S.(2002) “Creep Testing of Bitumens Using the Dynamic ShearRheometer,” International Journal of Pavement Engineering, Vol.3(2), pp.107-116.
    Ermak, A.A, S.M. Tkachev, S.I. Khoroshko, V.M. Yakubyak, V.M. Kadunin and S.A. Trofimov(2005) , Chemistry and Technology of Feuls and Oils, Vo1.41, NO.6, pp.486-490.
    Feng, X., Zha, X., and Hao.,P. (2011).“Research on Design Technology of TLA Modified Asphalt Mixture,” The Open Materials Science Journal, Vol.5, pp.140-146.
    Fu H., L. Xie, D. Dou, L. Li, M. Yu and S. Yao (2007). “Storage Stability and Compatibility of Asphalt Binder Modified by SBS Graft Copolymer,” Construction and Building Materials, Vol.21, pp.1528-1533
    Jongepier, R., and Kuilman, B. (1958). “Characteristics of the Rheology of Bitumens,” Proceedings of the Associations of Asphalt Paving Technology, Vol.38, pp.98-122.
    LaForce, R. (2006).“I 70 Glenwood Canyon Overlay with Trinidad Lake Asphalt/Steel Slag Hot Mix Asphalt,” Colorado Department of Trnasportation, No.CDOT-DTD-R-2005-13 Final Report,Denver.
    Lamontagne, J., Dumas, P., Mouillet, V. and Kister, J. (2001) “Comparison bby Fourier Transform Infrared (FTIR) Spectroscopy of Different Aging Techniques : Application to Road Bitumens, ” Fuel, Vol. 80, pp.483-488.
    Lesueur, D. (2009). “The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification,” Advances in Colloid and Interface Science, Vol.145, pp.42-82.
    Morea, F., R. Zerbino, and J. Agnusdei . (2013) “Improvements on Asphalt Mixtures Rutting Performance Characterization by the Use of Low Shear Viscosity,” Materials and Structures, Vol.46, pp.267-276.
    Noureldin, A.s., and Wood, L.S. (1998) “Variations in Molecular Size Distribution of Virgin and Recycled Asphalt Binders Associated with Aging, ”Transportation Research Record : Journal of the Transportation Research Board, No.1228, pp.191-197.
    Phillips, M.C., and Robertus, C. (1995)“Rheological Characterisation of Bituminous Binders in Connection With Permanent Deformation in Asphaltic Pavements, and the Zero-Shear-Viscosity Concept”, European Workshop on the Rheology of Bituminous Binders, Eurobitume,Brussels.
    Read, J. and Whiteoak, D. (2003). The Shell Bitumen Handbook, Shell Bitumen, UK.
    Russell, M., S, J., Uhlmeyer, Anderson, K., and Weston, J.(2008). Evaluation of Trinidad Lake Asphalt Overlay Performance, Washington State Department of Transportation, WA-RD 710.1, Washington, D.C.
    Smith, C., Chatergoon, L., and Whiting, R. (1996). “Toward the Characterization of Bitumen -Mineral Interactions in a Natural Asphalt,” The Analyst, Vol.121, pp.373-376.
    Taylor, R. (2007). Surface Interactions between Bitumen and Mineral Fillers and Their Effects on the Rheology of Bitumen-Filler Mastics, Ph.D. Dissertation, University of Nottingham.
    Widyatmoko, I., and Elliott, R. (2008). “Characteristics of Elastomeric and Plastomeric Binders in Contact with Natural Asphalt,” Construction and Building Materials, Vol.22, pp.239-249.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE