簡易檢索 / 詳目顯示

研究生: 游本立
You, Pen-Li
論文名稱: 應用於60-GHz及毫米波超寬頻無線通訊系統頻率合成器之新型切換電感技術與寬頻率可調範圍壓控振盪器
Novel Switched Inductor Techniques and Wide-tuning Range VCO for Frequency Synthesizer in 60-GHz and mm-Wave UWB Wireless Communication Systems
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 98
中文關鍵詞: 毫米波積體電路毫米波寬頻率可調範圍壓控振盪器切換電感可切換式人工接地金屬保護環
外文關鍵詞: Millimeter-wave integrated circuit, Millimeter-wave wide frequency tuning range voltage controlled oscillator, switched inductor, switchable artificial grounded metal guard ring
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 持續成長中的高畫質多媒體影音與數位內容相關產品驅使業界必須面對實現高資料量無線傳輸的全球市場需求。以目前業界所定出的標準,其資料傳輸率將達到7 Gbps以上。60-GHz 及毫米波頻帶非常適合用來實現超高資料量無線傳輸系統。系統前端電路所需的頻率合成器操作頻帶位於V-band,而工作頻寬將高達7 GHz,這將會大大提升電路設計上的難度。考量系統中訊號源產生電路中的關鍵元件壓控振盪器,其所需要的頻率可調範圍將高達7 GHz;若更進一步考量相位雜訊與頻率可調範圍的權衡性,製程、電壓、溫度變異效應的影響,低相位雜訊寬頻壓控振盪器的實現對電路設計者將是一個極大的挑戰。
    本論文首先探討具低相位雜訊之壓控振盪器實現在毫米波頻帶所面對的問題,並同時提出兩種可獲得較低相位雜訊的電路設計方式。一者採用雙推式電路架構配合共平面波導式單圈電感解決0.18-μm製程不易實現於毫米波頻帶並同時可提升電感的品質因素。二者採用駐波振盪器的架構配合錐狀式傳輸線與浮接金屬柵的電感設計以提高共振腔的品質因素,進而有效提高相位雜訊的表現。
    為了符合60-GHz毫米波頻帶無線傳輸的系統規格,具低相位雜訊的超寬頻壓控振盪器是頻率轉換上的主要需求。本論文中也提出兩種新型切換電感感值技術用以實現在毫米波壓控振盪器以提供所需的系統要求。第一個技術提出的是一個具有微小化、高品質因素之浮接金屬柵非均勻式差動傳輸線電感並可以藉由電性方式改變電感感值的設計。就此技術所實現一個56-GHz的壓控振盪器,其量測結果除了有低功耗及好的相位雜訊外,可調頻寬也可達2 GHz。所得的效能指標為 -180 dBc/Hz。第二個技術為可切換式人工接地金屬保護環技術,應用此技術可將當前大部分積體電路製程所提供的平面電感架構有效的轉換為“可切換”式電感。此技術不僅具有保護環的效果,同時可以切換平面電感的感值。基於可切換式人工接的保護環技術所設計的切換電感利用90-nm製程製作所得的V-band與W-band壓控振盪器測試元件分別顯示出頻率可調範圍可達到9.43 GHz(17%) 並具有效能指標上具有-188 dBc/Hz的記錄以及17.8 GHz 並具有效能指標上具有-179.5 dBc/Hz的記錄。

    Continuing growth of high definition multimedia and digital content has driven the industrial must to face the requirement of the high data rate wireless transmission in global market. According to the standards proposed by the industry, the greatest data transmission rates up to 7 Gbps. A frequency synthesizer with a bandwidth of 7 GHz in the V-band is required. A 60-GHz and millimeter-wave frequency band are very suitable for realizing ultra-high data rate wireless transmission systems. In such systems, VCO is a key component of the local signal generation and it requires a frequency tuning range (FTR) of 7 GHz. For further considering the trade-offs between the phase noise and frequency tuning range, as well as the effect of process, voltage and temperature (PVT) variations, it is an extreme challenge to achieve the low phase noise and wide tuning range for a VCO to a circuit designer.
    In this dissertation, the related issues are discussed for realizing the low phase noise voltage controlled oscillators in the millimeter-wave regime. Two approaches have been proposed to achieve low phase noise. The first one utilizes the push-push topology together with a high-Q co-planar waveguide (CPW) single-turn inductor to overcome the difficulty of implementation V-band oscillators in a 0.18-μm process. The second approach utilizes the standing wave oscillator topology together with a tapered transmission-line inductor which has floating metal strips to enhance the quality factor. By these ways, a millimeter wave VCO with low phase noise are achievable.
    To satisfy the specifications of 60-GHz millimeter-wave wireless communication systems, a low-phase noise VCO with wide frequency tuning range is necessary for frequency conversion. In this dissertation, we also present two kinds of new switchable inductance techniques for realizing the requirement of the millimeter-wave VCOs in 60-GHz systems. The first proposed technique is an innovational design of non-uniform differential transmission-line inductor (Non-UDTL-inductor). By shorting the floating metal strips to the ground or not, the equivalent inductance of the Non-UDTL-inductor is changeable. A 56-GHz VCO, whose tuning range achieves 2 GHz wide, is demonstrated with this technique and the measurement results exhibit good performances of power consumption and phase noise. The calculated figure of merits (FOM) is about -180 dBc/Hz. The second proposed technique is a switchable artificial grounded metal guard ring (SWAG-MGR). By utilizing this technique, most of the planar inductors nowadays in the monolithic integrated circuit can be converted to a “switchable” inductor. This technique not only serves as a guard ring but also switches the inductance value of the planar inductor. A 60-GHz VCO testkey, which has a FTR of 9.43 GHz (17%) and a record FOMT of -188 dBc/Hz, is also successfully demonstrated with a switched inductor based on the proposed SWAG-MGR technique. Meanwhile, a W-band VCO with 17.8 GHz tuning range and a record FOMT of -179.5 dBc/Hz is successfully demonstrated by using this technique.

    摘 要 I Abstract III 誌 謝 I Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization of the dissertation 4 Chapter 2 Millimeter-wave Low Phase Noise Voltage Controlled Oscillators 5 2.1 Design Challenges of Millimeter-wave Low Phase Noise VCO. 5 2.2 A 54-GHz Push-Push VCO with Wide Tuning Range in 0.18-μm CMOS 9 2.2.1 Introduction 9 2.2.2 Inductor Design 9 2.2.3 Circuit Structure 11 2.2.4 Experimental Results 13 2.2.5 Summary 16 2.3 A 55.5 GHz Wide-Tuning Range Low Phase Noise Standing Wave Oscillator 18 2.3.1 Introduction 18 2.3.2 Standing Wave Oscillator – Operation Principle 19 2.3.3 Standing Wave Oscillator - Topology 22 2.3.4 The Tapered Slow-wave Differential Transmission Line Inductor 23 2.3.5 Circuit description 28 2.3.6 Experimental Results 29 2.3.7 Summary 32 Chapter 3 Millimeter-Wave Band-Switched Voltage Controlled Oscillator with a Switchable Non-uniform Differential Transmission Line 33 3.1 Introduction 33 3.2 The Recent Frequency Tuning Techniques for Wide Frequency Tuning Range VCOs 35 3.3 56 GHz CMOS VCO Integrated with a Switchable Non-uniform Differential Transmission-Line Inductor 42 3.3.1 Introduction 42 3.3.2 Design of the Switchable Non-Uniform Differential Transmission Line 43 3.3.3 Dual-sub-Bands VCO Core Design 46 3.3.4 Measurement Results 47 3.3.5 Summary 50 Chapter 4 The Switchable Artificial Grounded Metal Guard Ring Technique 51 4.1 Introduction 51 4.2 Impact of the Grounded Metal Guard Ring on the Monolithic Planar Inductor 53 4.2.1 Guard Ring Effect on Planar Spiral Inductor 53 4.2.2 The Inductance and Q Variations of the Single-turn Inductor with the Guard Ring Effect 56 4.3 The Proposed New Switched Inductor Topology by Using the Switchable Artificial Grounded Metal Guard Ring 60 4.3.1 The Proposed Switchable Artificial Grounded Metal Guard Ring Technique 60 4.3.2 The Proposed New Switched Inductor Topology 61 4.3.3 The Characteristics of the Switched Inductor with SWAG-MGR 63 4.4 Experimental Results 66 4.4.1 Summary 73 4.5 A 55.5 GHz, FOMT of -189 dBc/Hz and 109 GHz, FOMT of -108.9 dBc/Hz Low Phase noise and Wide Tuning VCOs Using SWAG-MGR Technique in 90nm CMOS 74 4.5.1 Introduction 74 4.5.2 Design of a Switched Inductor by Using the Proposed SWAG-MGR Technique 74 4.5.3 Circuit Description 78 4.5.4 Experimental Results 80 4.5.5 Summary 84 Chapter 5 Conclusions and Future Works 85 5.1 Conclusions 85 5.2 Future Works 89 References 90 Publication List 97 Biography 98

    [1] WirelessHD standard 1.1, 2010. [Online]. Available:
    http:// www.wirelesshd.org/
    [2] WPAN Millimeter wave Alternative PHY Task Group 3c, IEEE standard 802.15,2009. [Online]. Available:
    http://www.ieee802.org/15/pub/TG3c.html
    [3] WiGig standard 1.0, 2010. [Online]. Available:
    http:// wirelessgigabitalliance.org/
    [4] B. Floyd, “A 16-18.8 GHz sub-integer-N frequency synthesizer for 60 GHz transceiver,” IEEE J. Solide-State Circuits, vol. 43, no. 5, pp. 1076-1086, May 2008.
    [5] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari and S. Mudanai, “Process Technology Variation,” IEEE Trans. Electron Devices, vol. 40, no. 58, pp. 2197–2208, Aug. 2011.
    [6] K. J. Lorenz, E. Bar, T. Clees, R. Jancke, C. P. J. Salzig and S. Selberherr, “Hierarchical Simulation of Process Variations and Their Impact on Circuits and Systems: Methodology,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2218–2226, Aug. 2011.
    [7] K. J. Lorenz, E. Bar, T. Clees, P. Evanschitzky, R. Jancke, C. Kampen, U. Paschen, C. P. J. Salzig and S. Selberherr, “Hierarchical Simulation of Process Variations and Their Impact on Circuits and Systems: Results,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2227–2234, Aug. 2011.
    [8] D. D. Kim, H. Wohlmuth, and W. Simburger, “A 70 GHz manufacturable complementary LC–VCO with 6.14 GHz tuning range in 65 nm SOI CMOS,” in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2007, pp. 540–541
    [9] Haifeng Xu, and Kenneth K. O., “High- Q Thick-Gate-Oxide MOS Varactors With Subdesign-Rule Channel Lengths for Millimeter-Wave Applications,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 363–365, Apr. 2008.
    [10] Donhha Shim, and Kenneth K. O., “Symmetric Varactor in 130-nm CMOS for Frequency Multiplier Applications,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 470–472, Apr. 2011.
    [11] J. Maget, M. Tiebout, and R. Kraus, “MOS varactors with n- and p-type gates and their influence on an LC-VCO in digital CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1139–1147, Jul. 2003.
    [12] Cao and K. K. O, “Millimeter-wave voltage controlled oscillator in 0.13 μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297–1304, Jun. 2006.
    [13] Z. Safarian and H. Hashemi, “Wideband muti-mode CMOS VCO design using coupled inductors,” IEEE Trans. Circuits Syst. I, Regular. Papers, vol. 56, no. 8, pp. 1830–1843, Aug. 2009.
    [14] J.-C. Chien and L.-H. Lu, "Design of Wide-tuning-range Millimeter-wave CMOS VCO with a Standing-Wave Structure," IEEE Journal of Solid-State Circuits (JSSC), Vol. 42, No. 9, pp. 1942-1952, Sep. 2007
    [15] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integr. Circuits Conf., May 1998, pp. 555–558.
    [16] Y. Seong-Mo and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 1705–1711, Jan. 2006.
    [17] M. Demirkan, S. P. Bruss, and R. R. Spencer, “11.8 GHz CMOS VCO with 62% tuning range using switched coupled inductors,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. Papers, Jun. 2007, pp. 401–404.
    [18] L. –Li, P. Reynaert and M. S. J. Steyaert, "Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive-Division LC Tank," IEEE Journal of Solid-State Circuits (JSSC), Vol. 44, No. 7, pp. 1950-1958, July. 2009
    [19] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.
    [20] B. Soltanian and P. Kinget, “Tail current-shaping to improve phase noise in LC voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1792–1802, Aug. 2006.
    [21] T. Lee and A. Hajimiri, “Oscillator phase noise: A tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [22] J. Groszkowski, “The Interdependence of Frequency Variation and Harmonic Contcnt, and the problem of Constant-Frequency Oscillators,” Proc. of the IRE, vol. 21, no. 7, pp 958-981, 1934
    [23] A. Jerng and C. Sodini, “The impact of device type and sizing on phase noise mechanism,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 360–369, Feb. 2005.
    [24] S. Trotta, H. Li, V. P. Trivedi, and J. John, A tunable flipflop-based frequency divider up to 113 GHz and a fully differential 77 GHz push-push VCO in SiGe BiCMOS technology, In: IEEE Radio Frequency Integrated Circuits Symp. Dig. (2009), pp. 47 – 50.
    [25] Y. –H. Cho, M. –D. Tsai, H. –Y. Chang, C. –C. Chang, H. Wang, A low phase noise 52-GHz push-push VCO in 0.18m bulk CMOS technology, In: IEEE Radio Frequency Integrated Circuits Symp. Dig. (2005), pp. 131-134.
    [26] D. D. Kim, J. Kim, and C. Cho, The process variability of a V-band LC-VCO in 65nm SOI CMOS, In: IEEE Radio Frequency Integrated Circuits Symp. Dig. (2008), pp. 131-134.
    [27] K. Ishibashi , M. Motoyoshi, N. Kobayashi, and M. Fujishima, 76GHz CMOS voltage-controlled oscillator with 7% frequency tuning range, In: IEEE Symp. on VLSI Circuits Dig. (2007), pp. 176-177.
    [28] P.–C. Huang, M.–D. Tsai, G. D. Vendelin, H. Wang, C.–H. Chen, and C.–S. Chang, A low-power 114-GHz push-push CMOS VCO using LC source degeneration, IEEE J. Solid-State Circuits, no.42, (2007), pp.1230 – 1239.
    [29] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, Millimeter-wave CMOS circuit design, IEEE Trans. Microw. Theory Tech., no.53, (2005), pp. 472 – 477.
    [30] H.–H. Hsieh and L.–H. Lu, A V-band CMOS VCO with a admittance- transforming cross-coupled pair, IEEE J. Solid-State Circuits, no. 44 (2009), pp. 1689 – 1696.
    [31] F. O’Mahony, C. P. Yue, M. Horowitz, and S.Wong, “10 GHz clock distribution using coupled standing-wave oscillators,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1813–1820, Nov. 2003.
    [32] T.-H. Huang and P.-L. You, “27-GHz low phase-noise CMOS standing wave oscillator for millimeter wave applications,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 367–370
    [33] D. Ham and W. Andress, “A circular standingwave oscillator,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2004, pp. 380–381.
    [34] W. F. Andress and D. Ham, “Standing wave oscillators utilizing wave adaptive tapered transmission lines,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 638–651, Mar. 2005.
    [35] T. S. D. Cheung and J. R. Long, “Shielded Passive Devices for Silicon-Based Monolithic Microwave and Millimeter-Wave Integrated Circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1183–1200, Mar. 2006.
    [36] L. Li, P. Reynaert, and M. Steyaert, “A 60-GHz CMOS VCO using capacitance-splitting and gate-frain impedance-balancing techniques,” in IEEE Transactions on Microwave Theory and Techniques., vol. 59, no. 2, pp. 406–413, Feb. 2011.
    [37] E. Hegazi and A. Abidi, “Varactor characteristics, oscillator tuning curves, and AM–FM conversion,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1033–1039, Jun. 2003.
    [38] E. Hegazi, H. Sioland, and A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921–1930, Dec. 2001.
    [39] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq, “VCO design for 60 GHz using differential shielded inductors in 0.13 μm CMOS,” in IEEE Radio Freq. Integr. Circuits Symp., 2008, pp. 135–138.
    [40] L. Li, P. Reynaert, and M. Steyaert, “Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive-Division LC Tank,” in IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1950–1958, July. 2009.
    [41] S. A. Wartenberg and J. R. Hauser, “Substrate Voltage and Accumulation-Mode MOS Varactor Capacitance,” in IEEE Trans. On Electron Device, Vol. 52, no. 7, pp. 1563-1567, July 2005.
    [42] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integr. Circuits Conf., May 1998, pp. 555–558.
    [43] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 909–917, Apr. 2005.
    [44] Z. Li and K. K. O, “A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296–1302, Jun. 2005.
    [45] Y. Seong-Mo and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans Microw. Theory Techn., vol. 54, no. 1, pp. 1705–1711, Jan. 2006.
    [46] M. Demirkan, S. P. Bruss, and R. R. Spencer, “11.8 GHz CMOS VCO with 62% tuning range using switched coupled inductors,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. Papers, Jun. 2007, pp. 401–404.
    [47] L. Geynet, E. De Foucauld, P. Vincent, and G. Jacquemod, “Fully-integrated multi-standard VCOs with switched LC tank and power controlled by body voltage in 130 nm CMOS/SOI,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. Papers, Jun. 2006, pp. 129–132.
    [48] M. Kossel et al., “LC PLL with 1.2-Octave locking range based on mutual-inductance switching in 45-nm SOI CMOS,” IEEE J. Solid -State Circuits, vol. 44, no. 2, pp. 436–449, Feb. 2009.
    [49] C.-Y. Yu, W.-Z. Chen, C.-Y. Wu, and T.-Y. Lu, “A 60-GHz, 14% Tuning Range, Multi-Band VCO with a Single Variable Inductor,” IEEE Asian Solid-State Circuits Conf. (ASSCC) Dig. Tech. Papers, 2008, pp. 129–132.
    [50] J. Steinkamp, F. Henkel, and P. Waldow, “Multimode wideband 130 nm CMOS WLAN and GSM/UMTS,” in Proc. IEEE Int. Workshop on Radio-Frequency Integr. Technol., Dec. 2005, pp. 105–108.
    [51] P.-K. Tsai, Y.-T. Chen, and T.-H. Huang, “Novel symmetric-structure switchable differential inductor design,” in Asia-Pacific Microwave Conference (APMC2009), TH3D-4, Dec. 7-10 2009, Singapore.
    [52] T.-H. Huang and J.-L. Wang, “New frequency plan and reconfigurable 6.6/7.128 GHz CMOS quadrature VCO for MB-OFDM UWB application,” in IEEE 2007 International Microwave Symposium, Honolulu HA, USA, Jun. 2007, pp.843-846.
    [53] J. Borremans et al., “A single-inductor dual-band VCO in a 0.06 mm2 5.6 GHz multiband front-end in 90 nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 324–325.
    [54] Z. Safarian and H. Hashemi, “Wideband muti-mode CMOS VCO design using coupled inductors,” IEEE Trans. Circuits Syst. I, Regular. Papers, vol. 56, no. 8, pp. 1830–1843, Aug. 2009.
    [55] L.-H. Lu, H.-H. Hsieh, and Y.-T. Lu, “A wide tuning-range CMOS VCO with a differential tunable active inductor,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 9, pp. 3462–3468, Sep. 2006.
    [56] J.-S. Ko and K. Lee, “Low power, tunable active inductor and its applications to monolithic VCO and BPF,” in IEEE MTT-S Int. Microw Symp. Dig., Jun. 1997, pp. 929–932.
    [57] T. Y. K. Lin and A. J. Payne, “Design of a low-voltage, low-power, wide-tuning integrated oscillator,” in IEEE Int. Circuits Syst. Symp., May 2000, pp. 629–632.
    [58] D. D. Kim, J. Kim, C. Cho, J.-O. Plouchart, M. Kumar, W.-H. Lee and K. Rim, “An Array of 4 Complementary LC-VCOs with 51.4% W-Band Coverage in 32nm SOI CMOS,” in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp. 278–279
    [59] J. Wood, T. C. Edwards, and S. Lipa, “Rotary Traveling-wave Oscillator Arrays: a New Clock Technology,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1654-1665, Nov. 2001.
    [60] Tim LaRocca et al., “Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 181-184, Jun. 2008.
    [61] Daquan Huang et al., “A 60GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction,” IEEE ISSCC Dig., pp. 1218 – 1227, Feb. 2006.
    [62] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari and S. Mudanai, “Process Technology Variation,” IEEE Trans. Electron Devices, vol. 40, no. 58, pp. 2197–2208, Aug. 2011.
    [63] K. J. Lorenz, E. Bar, T. Clees, R. Jancke, C. P. J. Salzig and S. Selberherr, “Hierarchical Simulation of Process Variations and Their Impact on Circuits and Systems: Methodology,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2218–2226, Aug. 2011.
    [64] K. J. Lorenz, E. Bar, T. Clees, P. Evanschitzky, R. Jancke, C. Kampen, U. Paschen, C. P. J. Salzig and S. Selberherr, “Hierarchical Simulation of Process Variations and Their Impact on Circuits and Systems: Results,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2227–2234, Aug. 2011.
    [65] S. Bozzola, D. Guermandi, A. Mazzanti and F. Svelto, “An 11.5% frequency tuning, -184 dBc/Hz noise FOM 54 GHz VCO,” in IEEE Radio Freq. Integr. Circuits Symp., 2008, pp. 657–660.
    [66] W. Chaivipas, K. Okada and A. Matsuzawa, “A 80GHz Voltage Controlled Oscillator utilizing a Negative Varactor in 90nm CMOS Technology,” in IEEE Asian Solid-State Circuits Conf. (ASSCC) Dig. Tech. Papers, 2008, pp. 133–136.
    [67] Pen-Li You, Kai-Li Huang, and Tzuen-Hsi Huang, “56 GHz CMOS VCO integrated with a switchable non-uniform differential transmission-line inductor,” in Proc. of European Microwave Conference (EmMC2009), Sept. 29 – Oct. 1 2009, Rome, Italy, pp. 397 – 400.
    [68] C.-J. Chao, S.-C. Wong, C.-J. Hsu, M.-J. Chen and L.-Y. Leu, “Characterization and modeling of on-chip inductor substrate coupling effect," in RFIC Symp. Dig. Papers, 2002, pp. 311–314.
    [69] C.-J. Chao, S.-C. Wong, C.-H. Kao, M.-J. Chen, L.-Y. Leu and K.-Y. Chiu, “Characterization and modeling of On-Chip Spiral Inductors for Si RFICs, “ in IEEE Transactions on Semiconductor Manufacturing., vol. 15, pp. 19–29, Feb. 2002.
    [70] J. H. Mikkelsen, O. K. Jensen and Torben Larsen, “Crostalk Coupling Effect of CMOS Co-Planar Spiral Inductors,” in Proc. IEEE Custom Integr. Circuits Conf., Oct. 2004, pp. 371–374.
    [71] A. Pun, T. Yeung, J. Lau, F. J.R. Clement and D. Su, “ Experimental Results and Simulation of Substrate Noise Coupling via Planar Spiral Inductor in RFICs,” in Proc. IEEE International Electron Devices Meeting, Dec. 1997, pp. 325–328.
    [72] J. H. Mikkelsen, O. K. Jensen and T. Larsen, “ Measurement and Modeling of Coupling Effects of CMOS On-Chip Co-planar Inductors,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems., Sept. 2004, pp. 37–40.
    [73] C. S. Kim, M. Park, C.-H. Kim, M.-Y. Park, S.-D. Kim, Y.-S. Youn, J.-W. Park, S.-H. Han, H. K. Yu and H. Cho, “Design guide of coupling between inductors and its effect on reverse isolation of a CMOS LNA,” IEEE MTT-S Int., Microwave Symp. Digest, Jun. 2000, pp. 225–230.
    [74] T. Blalake, Y. Leclercq and C. P. Yue, “On-chip RF isolation techniques,” in Proc. of IEEE BCTM, Dec. 2002. pp. 205–211.
    [75] A. L. L. Pun, T. Yeung, J. Lau, J. R. Clement and D. K. Su, "Substrate noise coupling through planar spiral inductor," IEEE Journal of Solid-State Circuits (JSSC), Vol. 33, No. 6, pp. 877-884, Jun. 1998
    [76] U. Yodprasit, M. Motoyoshi, R. Fujimoto, K. Takano, and M. Fujishima, “A 2.6-mW 106-GHz Transmission-Line-Based Voltage-Controlled Oscillator Integrated in a 65-nm CMOS Process,”in Proc. IEEE Radio and Wireless Symposium), Jan. 2011. Pp. 223-226.
    [77] C. Marcu and A. Niknejad, “ A 60 GHz high-Q tapered transmission line resonator in 90nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 775–778.
    [78] Agilent E5052B Signal Source Analyzer: Technical Overview, Agilent Technologies.
    [79] J. L. González, F. Badets, B. Martineau and D. Belot, “A 56-GHz LC-Tank VCO With 17% Tuning Range in 65-nm Bulk CMOS for Wireless HDMI,” in IEEE Transactions on Microwave Theory and Techniques., vol. 58, no. 2, pp. 1359–1366, May. 2010.
    [80] D. Murphy, Q.-J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang and M.-C. F. Chang, “A Low Phase Noise, Wideband and Compact CMOS PLL for Use in a Heterodyne 802.15.3c Transceiver,” in IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1606–1617, Jul. 2011.
    [81] Y.-H. Wong, W.-H. Lin, J.-H. Tsai and T.-W. Huang, “A 50-to-62GHz Wide-Locking-Range CMOS Injection-Locked Frequency Divider with Transformer Feedback,” in IEEE Radio Freq. Integr. Circuits Symp., 2008, pp. 435–438.
    [82] H.-H. Hsieh, F.-L. Hsueh, C.-P. Jou, F. Kuo, S. Chen, T.-J. Yeh, K.-W. Tan, P.-Y. Wu, Y.-L. Lin, and M-H Tsai, “A V-Band Divide-by-Three Differential Direct Injection-Locked Frequency Divider in 65-nm CMOS,” in Proc. IEEE Custom Integr. Circuits Conf., Oct. 2010, pp. 1-4
    [83] A. Ghilioni, U. Decanis, E. Monaco, A. Mazzanti and F. Svelto, “A 6.5mW Inductorless CMOS Frequency Divider-by-4 Operating up to 70GHz,” IEEE ISSCC Dig., pp. 282 – 284, Feb. 2011.
    [84] A. Ghilioni, U. Decanis, A. Mazzanti and F. Svelto, “A 4.8mW Inductorless CMOS Frequency Divider-by- 4 with more than 60% Fractional Bandwidth up to 70GHz,” in Proc. IEEE Custom Integr. Circuits Conf., Oct. 2010, pp. 1-4
    [85] H.-K. Chen, H.-J. Chen, D.-C. Chang, Y.-Z. Juang Y.-C. Yang and S.-S. Lu, “A mm-wave CMOS Multimode Frequency Divider,” IEEE ISSCC Dig., pp. 280 – 281, Feb. 2009.

    無法下載圖示 校內:2020-06-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE