簡易檢索 / 詳目顯示

研究生: 戴國圓
Tay, Kok-Wan
論文名稱: 薄膜塊體聲波諧振器的分析與設計
The Analysis and Design of Film Bulk Acoustic-Wave Resonators
指導教授: 吳朗
Wu, Long
黃正亮
Huang, Cheng-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 169
中文關鍵詞: 諧振器薄膜
外文關鍵詞: Thin film, Resonator
相關次數: 點閱:100下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要針對薄膜塊體聲波諧振器(FBAR)應用於無線高頻領域。FBAR是由較薄的上下電極,中間再夾一層氮化鋁薄膜壓電層所組成的三明治結構,坐落在低應力氮化矽振動板上的矽基板。選用反應性射頻磁控濺鍍系統來濺鍍氮化鋁薄膜,並分析氮化鋁薄膜的高c軸優選取向對鉬電極上的最佳濺鍍參數。
      利用Mason等值電路及傳輸線的基本原理來模擬各種不同壓電薄膜及電極材料對FBAR的特性影響。且得知材料特性及壓電薄膜厚度是最主要影響FBAR元件的特性,如共振頻率、有效機電耦合因數及品質因數等都與實際研製的FBAR元件相接近。
      氮化鋁薄膜對濺鍍在不同電極材料時,有幾個關鍵參數的調配會影響壓電薄膜的品質與特性,必須先確認,如濺鍍功率、濺鍍壓力、基板溫度及Ar/N2氣體流量比等,以求得最佳成長薄膜條件。實驗得知,對Al下電極而言,則夾有一層雜散排列的過渡層在Al下電極與AlN區域之間而嚴重影響聲波路徑。對雙電極的Pt/Ti和Au/Cr雖然沒有過渡層,但因其質量密度高及低塊體聲波波速造成其共振頻率明顯降低。此外,鉬電極的製程簡單只須一道光阻再沉積鉬電極即可。
      FBAR元件的特性不僅受到AlN薄膜厚度及品質的直接影響,同樣也受到不同上電極的材料及厚度的作用。結果發現當各層薄膜厚度減少時,則諧振頻率會隨之上升。所以適當的在製程上控制薄膜厚度或上電極厚度即可獲得所要的特定頻率。較厚的AlN薄膜及較高的濺鍍功率也會獲得較高c軸優選取向,並趨向較狹窄的搖晃曲線半高寬值。但是,卻增加晶粒大小及表面粗糙度,而使有效機電耦合因數降低,但促使FBAR元件的並聯共振品質因數增加。選用不同的上電極材料及厚度對FBAR元件的有效機電耦合因數及品質因數響應也會加以探討。

      This thesis focuses on the design of film bulk acoustic-wave resonator (FBAR) comprising an aluminum nitride (AlN) piezoelectric thin film sandwiched between two metal electrodes, and located on a silicon substrate with a low-stress silicon nitride (Si3N4) support membrane for high frequency wireless applications, and analysis the optimization of the thin AlN film deposition parameters on Mo electrodes using reactive RF magnetron sputter system.
      The theoretical foundation of Mason equivalent circuit and basic transmission line theory was used to simulate the influence of different piezoelectric films and electrode materials on the characteristics of FBARs are described. The results confirm that the materials properties and thickness of the piezoelectric film play a significant role in determining the performance of the FBAR, such as the resonant frequency, the effective electromechanical coupling coefficient ( ) and quality factors have closely been matched by fabricated FBAR data.
      Several critical parameters of the sputtering process such as RF power, deposition pressure, substrate temperature and Ar/N2 flow rate ratio were studied to clarify their effects on the different electrodes characteristic of the AlN films. The experiment indicated that the process for Mo electrode is easier compared with the Pt/Ti or Au/Cr bi-layer electrode as it entails only one photo resist and metal deposition step. Besides, Pt/Ti or Au/Cr electrodes reduced the resonance frequency due to it high mass density and low bulk acoustic velocity. Compared with the case of an Al bottom electrode, there is no evident amorphous layer between Mo bottom electrode and the deposited AlN film.
      The characteristics of the FBAR devices depend not only upon the thickness and quality of the AlN film, but also upon the thickness of the top electrode and the materials used. The results indicate that decreasing the thickness of either the AlN film or the top electrode increases the resonance frequency. This suggests the potential of tuning the performance of the FBAR device by the carefully controlling AlN film thickness. Besides, increasing either the thickness of the AlN film or higher RF power have improves a stronger c-axis orientation and tend to promote a narrower rocking curve full-width at half-maximum (FWHM), but increased both the grain size and the surface roughness, hence reduces the value of but increases the parallel resonant quality factor ( ) of the FBAR device. The effect of different top electrodes material and varying thickness on the performance of and quality factor of the fabricated FBAR devices are also discussed.

    CONTENTS Abstract (In Mandarin) I Abstract (In English) III Contents V Table Captions IX Figure Captions X Chapter 1 General Introduction 1 1-1 Background 1 1-2 Motivation 2 1-3 Communication Applications 4 1-4 Thesis Organization 4 Chapter 2 Analysis of Acoustic-wave Propagation and FBAR Design 6 2-1 Piezoelectric Basic Theory 6 2-2 Piezoelectric Constitutive Equations and Constants 8 2-2-1 Hexagonal Symmetry (6mm) Constant 9 2-3 Fundamentals of Film Bulk Acoustic-wave Resonator 12 2-4 One Dimensional Acoustic-wave Equation 13 2-5 Three-port Equivalent Circuit Model 14 2-5-1 Mason Equivalent Circuit Model 15 2-5-2 Redwood and KLM Equivalent Circuit Model 22 2-6 Network Analytical of Multi-layer FBAR Structure 23 2-7 Simplified of BVD Equivalent Circuit Model 25 2-8 Bandpass Filter Design 28 2-9 Equivalent Circuit for Two-port Networks 30 Chapter 3 Fabrication of AlN FBAR and Analytical Techniques 33 3-1 Properties of Aluminum Nitride (AlN) 33 3-2 Methods of Deposition Thin AlN Film 34 3-2-1 Definition of Plasma 35 3-2-2 Sputter Deposition (Sputtering) 38 3-2-3 DC Diode Sputtering 41 3-2-4 Magnetron Sputtering 43 3-2-5 RF Sputtering 44 3-2-6 Reactive Sputtering 45 3-3 Thin Film Growths 46 3-3-1 Amorphous, Crystal and Polycrystalline 46 3-3-2 Nucleation and Growth of Thin Films 48 3-4 Experimental Procedures 51 3-4-1 Reactive RF Magnetron Sputter System 51 3-4-2 Effect of Deposition Parameters 52 3-4-3 Etch Terminology 56 3-4-4 Wet and Dry Etch 59 3-5 FBAR Devices 61 3-5-1 Fabrication of FBAR Devices 64 3-5-2 Photolithographic Processes 66 3-6 Analytical Techniques of Materials and Measurement Setup 68 3-6-1 X-ray Diffraction 68 3-6-2 Atomic Force Microscopy 71 3-6-3 Scanning Electron Microscopy 72 3-6-4 Film Thickness Measurement 72 3-6-5 FBAR Devices Measurement Setup 72 Chapter 4 Simulation of Piezoelectric and Electrodes Materials for FBARs 74 4-1 Introduction 74 4-2 Composite Resonator Modeling 75 4-3 Simulation Results and Discussion 77 4-3-1 Influence of Different Piezoelectric Materials and Tthicknesses 77 4-3-2 Relationship Between Piezoelectric Film Thickness and Electrode Thickness 78 4-3-3 Influence of Electromechanical Coupling Constant, 79 4-3-4 Influence of Electrode Materials 79 4-3-5 Influence of Varying Thickness of Either Bottom or Top Electrode 80 4-3-6 Influence of Si3N4 Membrane Thickness 80 4-3-7 Influence of Resonance Area 81 4-4 Conclusions 81 Chapter 5 Effect of AlN Film and Electrode Materials on the Characteristics of the FBAR Devices 82 5-1 Introduction 82 5-2 The Growth of AlN Films and Their Characteristics 84 5-2-1 Effects of Film Thickness on Crystallization of AlN Film 84 5-2-2 Effects of RF Power on Crystallization of AlN Film 85 5-2-3 Effects of Different RF Powers Between the AlN Film Thickness and FWHM 86 5-2-4 Effects of AlN Film Thicknesses and FWHM of AlN (002) X-ray Rocking Curve 87 5-2-5 Effects of the Nitrogen Flow Rate Ratio and FWHM 87 5-2-6 Observations of Cross-Sectional Structure of AlN Films Thickness 88 5-2-7 Observation of Surface Roughness 89 5-3 The Characteristics of the FBAR on Molybdenum Electrodes 90 5-3-1 Effects of AlN Film Thickness and RF Power on Resonance Frequency 91 5-3-2 Effects of AlN Film and Top Electrode Thickness on Resonance Frequency 91 5-3-3 Effects of and Various Thicknesses of AlN Film with Different Top Electrodes 92 5-3-4 Effects of the Quality Factors for Various AlN Film Thicknesses 92 5-3-5 Effects of and Various Mo and Al Top Electrodes Thickness 93 5-3-6 Effects of the Quality Factors with the Various Thickness of the Mo Top Electrode 93 5-3-7 FBAR Devices with Mo Electrode 94 5-4 The Characteristics of the FBAR on Au Electrodes 95 5-4-1 XRD Pattern of AlN Film Deposited on Au Bottom Electrode 96 5-4-2 Cross-Sectional Structure of AlN Films on Au Electrode 96 5-4-3 Observation of Surface Roughness on Au Electrode 97 5-4-4 Effects of Au Top Electrode Thickness on Resonance Frequency 97 5-4-5 FBAR Devices with Au Electrodes 98 5-5 Conclusions 98 Chapter 6 Summary and Future Works 100 6-1 Summary 100 6-2 Future Works 102 References 104 Tables 110 Figures 117 Publication List 151 Acknowledgements 152 Table Captions Table 1.1 Comparison of Ceramic, SAW and FBAR technologies 110 Table 2.1 Comparison of piezoelectric thin film materials parameters values 110 Table 3.1 The comparison of piezoelectric materials 111 Table 3.2 The properties of AlN 111 Table 3.3 Compounds deposited by reactive sputtering 112 Table 3.4 Parameters used for sputtering AlN and Al thin films 112 Table 3.5 Wet versus dry etching 112 Table 3.6 The detail RIE etching parameters for SixNy 113 Table 3.7 DC Sputtering of metals parameters 113 Table 3.8 The detail ICP etching parameters for silicon substrate 113 Table 3.9 JCPDS card data of AlN powder 114 Table 3.10 The major equipment used in fabrication of FBAR 115 Table 4.1 Material properties of piezoelectric and electrode materials 116 Figure Captions Fig. 1.1 System-level schematic detailing the front-end design for a typical wireless transceiver 117 Fig. 2.1 The piezoelectric effect on the body of piezoelectric material: (a) Direct piezoelectric effect, (b) Converse piezoelectric effect 117 Fig. 2.2 The constitutive relation between mechanical and electrical variables 118 Fig. 2.3 The cross section of longitudinal wave generation and propagation in piezoelectric resonators by an electric field in the thickness direction 118 Fig. 2.4 Piezoelectric resonator of thickness d with electrodes on opposite surfaces backed by air on both sides. The lateral dimensions (X and Y directions) of the resonator are assumed to be large compared to the thickness (in Z direction) of resonator 118 Fig. 2.5 Representation of the general one-dimensional piezoelectric plate. (a)Electrical equivalent of three-port network model of a piezoelectric resonator, and (b) Relations among the three-port notations 119 Fig. 2.6 Mason model equivalent circuit of a finite thickness piezoelectric layer possesses two mechanical ports and one electrical port 119 Fig. 2.7 T-type equivalent 120 Fig. 2.8 Mason’s model for a non-piezoelectric material 120 Fig. 2.9 Redwood equivalent circuit model 121 Fig. 2.10 KLM equivalent circuit model 121 Fig. 2.11 Equivalent circuit of four-layer FBAR structure 122 Fig. 2.12 Multilayer equivalent circuit model resulting from a simplification the circuit in Fig. 2.11 through the use of acoustic transmission line 122 Fig. 2.13 Simplification of equivalent circuit model 122 Fig. 2.14 The schematic of (a) BVD circuit model and (b) MBVD circuit model of an FBAR 123 Fig. 2.15 Equivalent circuit of 2.5 stage FBAR ladder filter using series and shunt FBAR resonators. FBARs series resonance at passband center and FBARp shunt resonance are turned to a lower frequency than series resonators 123 Fig. 2.16 The design is for 1.5 stage (3 orders) ladder filter. (a) The response of impedance magnitude, and (b) The response of S11 and S21 124 Fig. 2.17 The discrete impedance element Z1, Z2 and Z3 124 Fig. 3.1 AlN crystal structure (a) distorted tetrahedron, and (b) unit cell of AlN. The direction of the c-axis is the desired growth direction in this thesis 125 Fig. 3.2 Principle of sputtering 125 Fig.3.3 Schematic of a typical DC diode sputtering system 126 Fig. 3.4 DC magnetron sputtering system 126 Fig. 3.5 The RF sputtering system 127 Fig. 3.6 An illustration of the reactive sputtering of Al target in the case of Al reacts with the N2 to form aluminum nitride 127 Fig. 3.7 Schematic illustration of film nucleation and growth 128 Fig. 3.8 Schematic of a reactive RF magnetron sputter system for the reactive sputtering of AlN films from Al target in nitrogen gas 128 Fig. 3.9 The operating flow chart of reactive RF magnetron sputtering system 129 Fig. 3.10 The basic difference between (a) Wet (isotropic) etched and (b) Dry (anisotropic) etched of etch profiles structure 129 Fig. 3.11 ICP etching of a silicon substrate (a) Top view, and (b) Cross- sectional 130 Fig. 3.12 Schematic illustration of FBAR configurations (a) Membrane type formed by etch-back, (b) Membrane type isolated by air-gap, (c) Mirror SMR isolated by Bragg reflector. The reflector itself is a sandwich structure of acoustically low impedance and high impedance layers 131 Fig. 3.13 Schematic of the fabrication step of an FBAR:(a) Standard RCA cleaning, (b) LPCVD low stress Si3N4 deposition, (c) Backside nitride patterning, then RIE and KOH etching, (d) Patterning and bottom electrode deposition, (e) Reactive sputtering AlN thin film, (f) Etching AlN thin film, (g) Pattering and top electrode deposition, and (h) Backside ICP etching residual silicon 132 Fig. 3.14 Schematic diagram of the relationship between mask and photoresist for etching and lift-off processes 133 Fig. 3.15 Different pattering process with negative and positive photoresists 133 Fig 3.16 Scattering of X-ray by atoms in parallel plane. When the condition for Bragg’s law is satisfied it results in constructive interference 134 Fig. 3.17 The schematic method of (a) 2θ scan and (b) Rocking curve scan 134 Fig. 3.18 Device measurement setup 135 Fig. 4.1 Relationship between resonant frequency and piezoelectric film thickness for different piezoelectric materials 136 Fig. 4.2 Relationship between resonant frequency and electrode thickness for different constant A1N piezoelectric thicknesses 136 Fig. 4.3 Relationship between electromechanical coupling constant and frequency bandwidth 137 Fig. 4.4 Relationship between resonant frequency and electrode thickness for different electrode materials and for equal top and bottom electrode thicknesses 137 Fig. 4.5 Relationship between resonant frequency and electrode thickness for different electrode materials, where Fig. 4.5(a) shows a constant top electrode thickness and a variable bottom electrode thickness, and Fig. 4.5(b) shows a constant bottom electrode thickness and a variable top electrode thickness 138 Fig. 4.6 Relationship between resonant frequency and supporting membrane thickness for different piezoelectric film thicknesses 138 Fig. 4.7 Influence of resonance area upon electrical impedance of FBAR device 139 Fig. 5.1 XRD patterns of AlN films with different thicknesses: (a) 1.35 μm, (b) 1.8 μm, (c) 2.25 μm, (d) 2.7 μm, and (e) 3.15 μm 139 Fig. 5.2 XRD patterns of AlN films on Mo deposited at different RF powers: (a) 200W, (b)300W, (c) 400W, and (d) 450W 140 Fig. 5.3 Relationship between the AlN film thickness and FWHM of the (002) peak of AlN films with different RF powers grown on Mo bottom electrode 140 Fig. 5.4 Relationship between the FWHM of AlN (002) X-ray rocking curve and various AlN film thicknesses on Mo bottom electrode 141 Fig. 5.5 The rocking curves FWHM of AlN (002) peak with the thickness of 2.25 μm on Mo bottom electrode 141 Fig. 5.6 XRD patterns of AlN films on Mo deposited at various nitrogen flow rate ratios: (a) N2=58%, (b) N2=66%, (c) N2=75%, and (d) N2=83% 142 Fig. 5.7 FWHM of the (002) peak of AlN films grown on Mo bottom electrode as a function of the nitrogen flow rate ratio 142 Fig. 5.8 SEM images of cross-sectional view of AlN films of different thicknesses grown on Mo bottom electrode: (a) 1.8 μm, (b) 2.25 μm, and (c) 2.7 μm 143 Fig. 5.9 Cross-sectional SEM of AlN films on Al bottom electrode at RF power of 400W with amorphous layer 143 Fig. 5.10 Statistical analysis of surface roughness of AlN films of different thicknesses: (a) 1.8 μm, (b) 2.25 μm, and (c) 2.7 μm 143 Fig. 5.11 Analysis of surface roughness of AlN films of different thicknesses 144 Fig. 5.12 SEM image of top view of fabricated two-port FBAR. The FBAR’s rectangular top electrode area was 150x100 μm2 144 Fig. 5.13 Variation in resonance frequency with AlN film thickness for different RF powers 145 Fig. 5.14 Variation in resonance frequency with AlN film thickness for different top electrode thicknesses 145 Fig. 5.15 Relationship between and various thicknesses of AlN films with different top electrodes. (Si3N4 membrane = 0.2 μm, Mo bottom electrode = 0.1 μm,) 146 Fig. 5.16 FBAR quality factor vs AlN film thickness (Si3N4 membrane = 0.2 μm, Mo bottom electrode = 0.1 μm and Mo top electrode = 0.2 μm) 146 Fig. 5.17 Relationship between and various Mo and Al top electrodes thicknesses of FBARs (Si3N4 membrane = 0.2 μm, Mo bottom electrode = 0.1 μm, and AlN film = 2.25 μm) 147 Fig. 5.18 Quality factor vs thickness of Mo top electrode (Si3N4 membrane = 0.2 μm, Mo bottom electrode = 0.1 μm and AlN film = 2.25 μm) 147 Fig. 5.19 Measured of S11 and S12 responses of two-port FBAR 148 Fig. 5.20 Measured input impedance, (a) magnitude and (b) phase Fig. 5.21 XRD pattern of AlN film deposited on Au bottom electrode by RF sputtering 149 Fig. 5.23 AFM surface roughness of AlN film deposited on Au bottom electrode 149 Fig. 5.24 Relationship between the resonant frequency and a variable top electrode thickness with constant AlN film thickness, Au bottom electrode and low-stress Si3N4 membrane 150 Fig. 5.25 Measured frequency response of input impedance and phase of AlN FBAR 150

    References
    [1] R. B. Stokes, J. D. Crawford et al, “X-Band Thin Film Acoustic Filters on GaAs,”
    International Microwave Symposium Digest, pp.157-160 (1992).
    [2] K. M. Lakin and J. S. Wang, “UHF Composite Bulk Wave Resonator” Ultrasonics
    Symposium, pp.834-837 (1990).
    [3] R. C. Ruby, P. Bradley, Y. Oshmyansky and A. Chien: IEEE Ultrason. Symp. (2001) 813.
    [4] J. D. Larson III, SM, R. C. Ruby, P. D. Bradley, J. Wen, S. L. Kok and A. Chien: IEEE Ultrason. Symp. p.869 (2000).
    [5] K. M. Lakin, J. S. Wang, G. R. Kline, A. R. Landin, Y. Y. Chen, and J. D. Hunt: IEEE Ultrason. Symp. Ca 1 p.466 (1982).
    [6] A. Noreika, M. Francombe, and S. Zeitman, “Dielectric properties of reactively sputtered films of aluminum nitride”, Journal of Vacuum Science & Technology A, vol. 6, pp.194-197 (1996).
    [7] K. M. Lakin and J. S Wang, “Acoustic bulk wave composite resonators”, Applied Physics Letters, vol.38, pp.125-127 (1981).
    [8] K. M. Lakin, G. R. Kline, R. S. Ketcham, M.J.T. and K.T.McCarron, “Stacked crystal filters implemented with thin films,” in Proceedings of the 43rd Annual Symposium on Frequency Control, Denver, Co, USA, pp.536-543 (1989).
    [9] T. Shiosaki, T.Yamamoto, T.Oda and A.Kawabata, “Low-temperature growth of piezoelectric AlN by rf reactive planar magnetron sputtering,” Appl Phys. Lett., vol.36, no.8, pp.643-645 (1980).
    [10] M.-A. Dubois and P. Muralt, “Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications,” Applied Physics Letters, vol. 74, no.20, pp.3032-3034 (1999).
    [11] S. V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale and R. A. Moore, “Film bulk acoustic wave resonator technology,” Proceedings of the IEEE Ultrasonics Symposium, Honolulu, HI, USA, (1990).
    [12] K. M. Lakin, and G. R. Kline, and K. T. McCarron, “High-Q microwave acoustic resonators and filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 41 (12), pp.2139-2146 (1993).
    [13] R. Ruby, P. Bradley, J. D. I. Larson, and Y. Oshmyansky, “PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electronics Letters, vol.35, pp.794-795 (1999).
    [14] A . Technologies,”Palo Alto, California,” www.agilent.com.
    [15] P. J. Yoon GW, “Fabrication of ZnO-based film bulk acoustic resonator devices using W/SiO2 multilayer reflector,” Electronics Letters, vol. 36 (16), pp.1435-1437 (2000).
    [16] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore, “Thin-film bulk acoustic resonators and filters using ZnO and lead-zinconium-titanate thin films,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, pp.769-778 (2001).
    [17] F. Martin, P. Muralt, M.-A. Dobois and A. Pezous, “Thickness dependence of the properties of highly c-axis textured AlN thin films,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Film, vol. 22, no.1, pp.361-365 (2004).
    [18] W. P. Mason, Physical Acoustic Principles and Methods, Vol.1A, Academic Press, New York. pp.239-247 (1964).
    [19] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech House Inc, London England, (1988).
    [20] J. Larson, P. Bradley, S. Wartenberz, R. Ruby, ”Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated measurement system” IEEE Ultrasonics Symposium, pp.863-868 (2000).
    [21] R. M. W. D. S. Ballantine, S. J. Martin, A. J. Ricco, E. T. Zellers, G.. C. Freye, H. Wholtjen, Acoustic Wave Sensors, San Diego; Academic press, (1997).
    [22] S. M. Sze: John Wiley and Sons, New York, 2nd edition, (1981).
    [23] F. S. Hichernell, “Zine Oxide Films for Acoustoelectric Device Application”, IEEE Transaction on Sonic and Ultrasonics, vol. Su-32, pp.621-629 (1985).
    [24] G.. S. Kino, Acoustic Wave :Devices, Imaging & Analog Signal Processing, Prentice-Hall, (1990).
    [25] K. M. Lakin, “Equivalent Circuit Modeling of Stacked Crystal Filters”, 35th Annual Frequency Control Symposium, Philadelphia Pa, pp.257-262 (1981).
    [26] IEEE Standard on Piezoelectricity, ANS/IEEE Std. pp.176 (1987).
    [27] J. L. Josept, S. N. Rajan, R. Rief, G. S. Charles, IEDM 96, 4.4.1-4.4.4 (1996).
    [28] K. M. Lakin, G.. R. Kline, and K. T. McCarron. “Thin film bulk acoustic wave filters for GPS”, IEEE proc. of the Ultrasonics Symposium, (1992).
    [29] S. Sherrit, S. P. Leary, B. P. Dolgin and Y. Bar-Cohen, “ Comparison of the Mason and KLM Equivalent Circuits for Piezoelectric Resonators in the Thickness Mode”, IEEE Ultrasonics Symposium, Caesars Tahoe, NV, USA, (1999).

    [30] W. P. Mason, Electromechanical Transducers and Wave Filters, New York: D. Van Nostrand, (1942).
    [31] W. P. Mason, Physical acoustics and the properties of solids, Princeton, NJ, (1958).
    [32] M. Readwood, “Transient Performance of a Piezoelectric Transducer”, J. Acoust. Soc. Amer, vol.33 No. 4, pp.527-536 (1961).
    [33] S. A. Morris and C. G. Hutchens, “Implementation of Mason’s Model on Circuit Analysis Programs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol, UFFC-33, pp.295-298 (1986).
    [34] W. M. J. Leach, “Controlled-source Analogous Circuits and SPICE Models for Piezoelectric Transducers”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol, 41, pp.60-66 (1994).
    [35] A. Puettmer, P. Hauptmann, R. Lucklum, O. Krause, and B. Henning, “SPICE Model for Lossy Piezoceramic Transducers”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol, 44, pp.60-66 (1997).
    [36] R. Krimhotz, D. A. Leedom and G.. L. Matthaei, “New Equivalent Circuits for Elementary Piezoelectric Transducers”, Electron Lett., vol.6, No. 13, p.398-399 (1970).
    [37] F. S. Foster, L. K. Ryan and D. H. Turnbull, “Characterization of Lead Zirconate Titanate Ceramics for Use in Miniature High Frequency (20-80 MHz) Transducers”, IEEE Trans UFFC, vol.38, pp.446-453 (1991).
    [38] A. Ballato, “Modeling Piezoelectric and Piezomagnetic Devices and Structure via Equivalent Networks”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol, 48, pp.1189-1240 (2001).
    [39] V. O. S. Sherrit, J. M. Sansinena, X. Bao, Z. Chang and Y. Bar-Cohen, “The Use of Piezoelectric Resonators for the Characterization of Mechanical Properties of Polymers”, Proceedings of the SPICE Smart Structure Conference, San Diego, C.A. (2002).
    [40] S. Sherrit, H. D. Wiedericky, B. K. Mukherjeey and M. Sayerz, ”An Accurate Equivalent Circuit for the Unloaded Piezoelectric Vibrator in the Thickness Mode”, J. Phys. D: Appl. Phys., vol. 30, pp.2354-2363 (1997).
    [41] J. D. Larson, P. D. Bradley, S. Waretenberg and R.C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System”, 2000 IEEE Ultrasonics Symposium Digest, vol. 1, pp.863-868 (2000).
    [42] R. Aigner, J. Kaitila, J. Ella, L. Elbrech, W. Nessler, M. Handtmann, T. R. Herzog and S. Marksteiner,”Bulk-AcousticWave Filter: Performance Optimization and Volume Manufacturing”, 2003 IEEE MIT-S Digest, pp.2001-2004 (2003).
    [43] R. Ruby and P. Merchant, “Micromachined thin film bulk acoustic resonators”, IEEE Int. Freq. Contr. Symp., (1994).
    [44] J. J Lutsky, R. S. Naik, R. Reif and C. G. Sodini, “ A Sealed Cavity TFR Process for RF Bandpass Filters”, Proc. Int. Electron Devices Mtg., pp.95-98 (1997).
    [45] D. Kajfez and P. Guillon, Dielectric Resonators, Norwood, MA:Artech House, (1986).
    [46] R. S. Naik, J. J Lutsky, R. Reif, R. Miller, J. Pastalan, G. Rittenhouse and Y. H. Wong “Measurements of the Bulk, C-axis electromechanical coupling constant as a function of AlN film quality”, IEEE Trans, Ferroelectrics and Freq. Contr., vol 47. (2000).
    [47] David M. Pozar: Microwave Engineering, New York: John Wiley & Sons, (1998) 2nd ed., Chap.4, pp.206-237.
    [48] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore, “Thin-Film Bulk Acoustic Resonators and Filters Using ZnO and Lead-Zirconium-Tatanate Thin Films”’ IEEE Trans. on Microwave Theory and Technology, vol. 49, No. 4, (2001).
    [49] G. L. Matthaei, L. Young and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structure, (1975).
    [50] J. Koike, K. Shimore and H. Ieki: Jpn. J. Appl. Phys. 32 p.2337 (1993).
    [51] M. Kadota and C. Kondoh: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 (3) p.958 (1997).
    [52] S. Strite, M. E. Lin, and H. Morkoc, "Progress and Prospects for GaN and the III-V Nitride Semiconductors” Thin Solid Films, vol. 231, pp. 197-210 (1993).
    [53] C. Caliendo, G. Saggio, P. Verardi, and E. Verona, "Piezoelectric AlN Film for SAW Device Applications”, Ultrasonics Symposium, pp.249-252 ( 1993).
    [54] G. Aylward and T. Findlay, "Properties of Inorganic Compounds”, SI Chemical Data, P. Storer, Ed. NY: John Wiley & Sons, (1971).
    [55] S. Yoshida et al., Reactive MBE of AlN, J. Vac. Sci. Technol. 16, pp. 990-993 (1979).
    [56] C. C. Cheng, Y. C. Chen, H. J. Wang, and W. R. Chen, "Low-temperature Growth of Aluminum Nitride Thin Films on Silicon by Reactive Radio Frequency Magnetron Sputtering”, Journal of Vacuum Science & Technology A, vol. 14, pp.2238-2242 (1996).
    [57] M. B. Assouar, O. Elmazria, L. L. Brizoual, and P. Alnot, "Reactive DC Magnetron Sputtering of Aluminum Nitride Films for Surface Acoustic Wave Devices”, Diamond and Related Materials, vol. 11, pp.413-417 (2002).
    [58] F. Brunet, F. Randriamora, A. Deneuville, P. Germi, B. Anterion, and M. Pernet, "Highly Textured Hexagonal AlN Films Deposited at Low Temperature by Reactive Cathodic Sputtering”, Materials Science & Engineering B, vol. 59, pp.88-93 (1999).
    [59] F. Engelmark, G. Fuentes, I. V. Katardjiev, A. Harsta, U. Smith, and S. Berg, "Synthesis of Highly Oriented Piezoelectric AlN Films by Reactive Sputter Deposition”, Journal of Vacuum Science & Technology A, vol. 18, pp.609-1612 (2000).
    [60] H. Maiwa and K. Okazaki, "Preparation of AlN Thin Films by Reactive Sputtering and Optical Emission Spectroscopy During Sputtering”, Ferroelectrics, vol.131, pp.83-89 (1992).
    [61] A. J. Noreika, M. H. Francombe, and S. A. Zeitman, "Dielectric Properties of Reactively Sputtered Films of Aluminum Nitride”, Journal of Vacuum Science & Technology A, vol. 6, pp.194-197 (1969).
    [62] R. S. Kagiwada, H. H. Yen, K. F. Lau, High Frequency SAW Devices on AlN/Al2O3, Proc. IEEE 1987 Ultrasonics Symp. pp.598-601 (1987).
    [63] S. Tomabechi, K. Wada, S. Saigusa, H. Matsuhashi, H. Nakase, K. Masu, and K.Tsubouchi, "Development of High Quality AlN Epitaxial Film for 2.4 GHz Front-end SAW Matched Filter”, 1999 IEEE Ultrasonics Symposium Proceedings, vol. 2, pp.263-267 (1999).
    [64] A. H. Khan, J. M. Meese, E. J. Charlson, E. M. Charlson, T. Stacy, S. Khasavinah, T. Sung, G. Popovici, M. A. Prelas, J. E. Chamberlain, and H. W. White, "AlN on Diamond Thin Films Grown by Chemical Vapor Deposition Methods”, Proceedings of the SPIE The International Society for Optical Engineering, vol. 2151, pp.44-49 (1994).
    [65] C. L. Aardahl, J. W. Rogers, Jr., H. K. Yun, Y. Ono, D. J. Tweet, and S. T. Hsu, "Electrical Properties of AlN Thin Films Deposited at Low Temperature on Si(100)”,Thin Solid Films, vol. 346, pp.174-180 (1999).
    [66] A. U. Ahmed, A. Rys, N. Singh, J. H. Edgar, and Z. J. Yu, "The Electrical and Compositional Properties of AlN-Si interfaces”,Journal of the Electrochemical Society, vol. 139, (1992).
    [67] K. Tsubouchi, K. Sugai, N. Mikoshiba, AlN Material Constants Evaluations and SAW Properties on AlN/Al2O3 and AlN/Si, Proc. IEEE 1981 Ultrasonics Symp. pp. 375-380.
    [68] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, New Jersey, (2001).
    [69] R. Parsons, Sputter Deposition Processes, Thin Film Processes II, J.L. Vossen and W. Kern, Eds. CA, USA: Academic Press Limited, p.178 (1991).

    [70] M. Ohring, "Plasma and Ion Beam Processing of Thin Films” in Materials Science of Thin Films. USA: Academic press, p.215 (2002).
    [71] D. W. Pashley, M. J. Stowell, M. H. Jacobs and T. J. Law, vol.10, p.127 (1976).
    [72] G. E. McGuire, Semiconductor Materials and Process Technology Handbook, Noyes Publications, Park Ridge, New Jersay, U.S.A. pp.410-428.
    [73] G. F. Iriarte, F. Engelmark, and I. V. Katardjiev, "Reactive Sputter Deposition of Highly Oriented AlN Films at Room Temperature," Journal of Materials Research, vol. 17, pp.1469-1475 (2002).
    [74] M. Ishihara, K. Yamamoto, F. Kokai, Y. Koga. Jpn. J. Appl. Phys. 40 p.2413 (2001).
    [75] V. M. Ristic, Principles of Acoustic Devices. New York, John: Weley & Sonn. pp.174-276, (1987).
    [76] K. M. Lakin, G. R. Kline, K.T. McCarron, “Development of Miniature Filter for Wireless Applications”, IEEE MTT-S Digest, pp.883-886 (1995).
    [77] K. M. Lakin, J. S. Wang, “Acoustic Bulk Wave Composite Resonators”, Appl. Phys. Lett. 38 (3) (1981).
    [78] S. N. Rajan, J. L. Josept, R. Rief, G. S. Charles, “Electromechanical Coupling Constant Extraction of the Thin-Film Piezoelectric Materials using a Bulk Acoustic Wave Resonator”, IEEE Trans. Ultrasonics, Ferroelec. Frequency Control, Vol. 45 (1), (1998).
    [79] R. C. Ruby, and P. P. Merchant: Proc. IEEE 48th Symp. on Freq.Contr. p.135 (1994).
    [80] P. Defranould, “Surface Acoustic Wave Bandpass Filters on ZnO/Pyrex Substrate with Zero Temperature Coefficient”, Proc. Ultrason. Symp., pp.341-344 (1983).
    [81] M. Schmid, E. Benes, W. Burger and V. Kravchenko: IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 38 p.199 (1991).
    [82] S. Horwitz and C. Milton: IEEE MTT-S Dig., p.165 (1992).
    [83] K. M. Lakin: IEEE MTT-S Int. Microwave Symp. Dig. 1 p.149 (1992).
    [84] J. Y. Park, H. C. Lee, Y. J. Ko and J. U. Bu,”Silicon Bulk Micromachined FBAR Filters for W-CDMA Applications, 33rd European Microwave Conference, pp.907-910 (2003).
    [85] Marc-Alexandre Dubois and Paul Muralt: Appl. Phys. Lett. 74 p.3032 (1999).
    [86] K. Tsubouchi and N. Mikoshiba: IEEE Trans. Sonics & Ultrason. 32 p.634 (1985).
    [87] H. C. Lee and J. Y. Lee: J. Mater. Sci., Materials in Electronic. 5 p.221 (1994).
    [88] K. W. Tay, L. Wu, C. L. Huang and M. S. Lin, 2003 IEEE Ultrasonic Symp. p.464 (2003).

    下載圖示 校內:立即公開
    校外:2005-01-24公開
    QR CODE