| 研究生: |
郭俊逸 Kuo, Jin-Yi |
|---|---|
| 論文名稱: |
皮膚病變之生醫電阻抗變化模擬分析 The Simulation Analysis of Bioimpedance Variations for Skin Lesion |
| 指導教授: |
鄭國順
Cheng, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 皮膚病變 、生醫電阻抗 、相位 、模擬 |
| 外文關鍵詞: | Skin lesion, Bioimpedance, Phase, Simulation |
| 相關次數: | 點閱:119 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過度日曬容易導致皮膚病變,嚴重的病變可能發展為皮膚癌而許多研究指出早期發現治癒機會極高。近年來許多研究證實生醫電阻抗相位和健康狀況相關聯,相位的研究多著重於全身電阻抗量測。然而大範圍人體電阻抗相位測量無法評估局部皮膚生理狀況,電阻抗相位變化亦十分細微且易受影響,故此研究主要以模擬的方式探討生醫電阻抗相位與皮膚病變的關係,以實際電阻抗量測流程分析電阻抗在不同皮膚厚度、電性參數、病變延展的結果,並試圖從結果中找出適合的量測方案。結果顯示低頻量測的相位解析度較好,易於評估健康皮膚深度與病變延展,且可避免病變區域與量測電極間幾何偏差所造成之相位誤差。
Excess sun exposure could cause skin lesion, or even worse, skin cancer. Early treatment helps to reduce mortality. Recently, studies shows the correlation between bioimpedance phase angle and health status, where vastly focus on total body measurement. Therefore, bioimpedance phase angle is adopted in skin lesion assessment with simulation. By simulating process of actual bioimpedance measurement, phase angle variation in different skin thickness, electrical parameter, lesion extension is evaluated. Finally, we try to introduce a proposal in measuring bioimpedance phase of skin lesion. The result shows a better phase resolution for low-frequency measurement. Low-frequency measurement is beneficial for estimating skin thickness and lesion extension, and provides good tolerance of phase error in lesion-electrode misalignment.
[1] E. N. Marieb, P. B. Wilhelm, and J. Mallatt, Human anatomy: Pearson, 2014.
[2] Y. Lee and K. Hwang, "Skin thickness of Korean adults," Surgical and Radiologic Anatomy, vol. 24, pp. 183-189, 2002.
[3] D. L. Narayanan, R. N. Saladi, and J. L. Fox, "Review: Ultraviolet radiation and skin cancer," International journal of dermatology, vol. 49, pp. 978-986, 2010.
[4] S. B. Edge, D. R. Byrd, C. C. Compton, A. G. Fritz, F. L. Greene, and A. Trotti, AJCC cancer staging manual vol. 649: Springer New York, 2010.
[5] J.-C. Martinez and C. C. Otley, "The management of melanoma and nonmelanoma skin cancer: a review for the primary care physician," in Mayo Clinic Proceedings, 2001, pp. 1253-1265.
[6] C. C. Compton, D. R. Byrd, J. Garcia-Aguilar, S. H. Kurtzman, A. Olawaiye, and M. K. Washington, AJCC Cancer Staging Atlas: A Companion to the Seventh Editions of the AJCC Cancer Staging Manual and Handbook: Springer Science & Business Media, 2012.
[7] Taiwan Cancer Registry. Available: http://cph.ntu.edu.tw/main.php?Page=A1
[8] M. Mogensen and G. B. Jemec, "Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies," Dermatologic surgery, vol. 33, pp. 1158-1174, 2007.
[9] D. S. Rigel, J. Russak, and R. Friedman, "The evolution of melanoma diagnosis: 25 years beyond the ABCDs," CA: a cancer journal for clinicians, vol. 60, pp. 301-316, 2010.
[10] C. Wassef and B. K. Rao, "Uses of non‐invasive imaging in the diagnosis of skin cancer: an overview of the currently available modalities," International journal of dermatology, vol. 52, pp. 1481-1489, 2013.
[11] J. T. Muobarak, "Bioelectrical impedance as a diagnostic factor in the clinical practice and prognostic factor for survival in cancer patients: prediction, accuracy and reliability," Journal of Biosensors & Bioelectronics, 2012.
[12] O. G. Martinsen and S. Grimnes, Bioimpedance and bioelectricity basics: Academic press, 2011.
[13] K. S. Cole, "Permeability and impermeability of cell membranes for ions," in Cold Spring Harbor Symposia on Quantitative Biology, 1940, pp. 110-122.
[14] H. P. Schwan, "Electrical properties of tissue and cell suspensions," Advances in biological and medical physics, vol. 5, pp. 147-209, 1956.
[15] H. Schwan, "Electrical properties of tissues and cell suspensions: mechanisms and models," in Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, 1994, pp. A70-A71 vol. 1.
[16] S. Grimnes and Ø. G. Martinsen, "Alpha-dispersion in human tissue," in Journal of Physics: Conference Series, 2010, p. 012073.
[17] A. Piccoli, "Patterns of bioelectrical impedance vector analysis: learning from electrocardiography and forgetting electric circuit models," Nutrition, vol. 18, pp. 520-521, 2002.
[18] U. Birgersson, E. Birgersson, P. Åberg, I. Nicander, and S. Ollmar, "Non-invasive bioimpedance of intact skin: mathematical modeling and experiments," Physiological measurement, vol. 32, p. 1, 2011.
[19] U. Birgersson, "Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurements," 2012.
[20] M. S. Mialich, J. M. F. Sicchieri, and A. A. J. Junior, "Analysis of body composition: A critical review of the use of bioelectrical impedance analysis," International journal of clinical nutrition, vol. 2, pp. 1-10, 2014.
[21] H. Lukaski, "Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research," European journal of clinical nutrition, vol. 67, pp. S2-S9, 2013.
[22] S. Di Somma, H. Lukaski, M. Codognotto, W. Peacock, F. Fiorini, N. Aspromonte, et al., "Consensus paper on the use of BIVA (Bioeletrical Impendance Vector Analysis) in medicine for the management of body hydration," Emergency Care Journal, vol. 7, pp. 6-14, 2011.
[23] M. Bodo, T. Settle, J. Royal, E. Lombardini, E. Sawyer, and S. W. Rothwell, "Multimodal noninvasive monitoring of soft tissue wound healing," Journal of clinical monitoring and computing, vol. 27, pp. 677-688, 2013.
[24] L. Nescolarde, J. Yanguas, H. Lukaski, X. Alomar, J. Rosell-Ferrer, and G. Rodas, "Localized bioimpedance to assess muscle injury," Physiological measurement, vol. 34, p. 237, 2013.
[25] R. Bayford and A. Tizzard, "Bioimpedance imaging: an overview of potential clinical applications," Analyst, vol. 137, pp. 4635-4643, 2012.
[26] Y. A. Glickman, O. Filo, M. David, A. Yayon, M. Topaz, B. Zamir, et al., "Electrical impedance scanning: a new approach to skin cancer diagnosis," Skin Research and Technology, vol. 9, pp. 262-268, 2003.
[27] D. Gupta, C. G. Lis, S. L. Dahlk, P. G. Vashi, J. F. Grutsch, and C. A. Lammersfeld, "Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer," British journal of nutrition, vol. 92, pp. 957-962, 2004.
[28] T. Malecka-Massalska, A. Smolen, J. Zubrzycki, K. Lupa, and K. Morshed, "Bioimpedance vector pattern in head and neck squamous cell carcinoma," Journal of Physiology and Pharmacology, vol. 63, p. 101, 2012.
[29] K. Norman, N. Stobäus, M. Pirlich, and A. Bosy-Westphal, "Bioelectrical phase angle and impedance vector analysis–Clinical relevance and applicability of impedance parameters," Clinical Nutrition, vol. 31, pp. 854-861, 2012.
[30] L. Santarpia, M. Marra, C. Montagnese, L. Alfonsi, F. Pasanisi, and F. Contaldo, "Prognostic significance of bioelectrical impedance phase angle in advanced cancer: preliminary observations," Nutrition, vol. 25, pp. 930-931, 2009.
[31] K. A. Holbrook and G. F. Odland, "Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis," Journal of Investigative Dermatology, vol. 62, pp. 415-422, 1974.