簡易檢索 / 詳目顯示

研究生: 劉家佑
Liou, Chia-Yu
論文名稱: 六軸工業用機械手臂之基於順應控制教導器研究
Study on Compliance Control based Teach Pendant of 6-axis Industrial Manipulator
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 機械手臂動態模型系統鑑別順應控制
外文關鍵詞: Robot Manipulator, Dynamic Model, System Identification, Compliance Control
相關次數: 點閱:191下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著自動化與智慧化的發展,機械手臂的使用越來越廣泛,應用層面也由重複性工作演進為人機協作之複雜運用。本論文分別以順應控制中的阻抗控制與導納控制等架構設計教導器,方便機械手臂運動規劃,實現人機協作的功能。為了使機械手臂與外界環境的作用力產生順應性,需要取得機械手臂的外界接觸力資訊。一般而言,外界接觸力可直接使用力量感測器量測或間接設計觀測器估測取得,本論文同時使用此兩種方法取得外界接觸力資訊。此外,觀測器與機械手臂的阻抗控制架構需要使用系統動態模型且模型精準度對兩者的影響甚大,因此需準確鑑別機械手臂的動態模型。使用任一順應控制架構設計教導器皆需要將機械手臂軸空間的冗餘自由度、力與力矩對應不同空間的轉換以及機械手臂賈可比矩陣的奇異點納入考量。本論文所設計出之順應控制教導器除了可讓機械手臂對工作空間的接觸產生順應性外,也可藉由使用不同的賈可比矩陣決定是否讓機械手臂的姿態具有順應性,以應對較為複雜的運動規劃。順應控制的質量、阻尼等參數值取決於運動規劃所需之精確度、速度與使用者感受。最後,本論文將順應控制教導器應用於六軸機械手臂並且達到期望的實驗結果。

    Thanks to progress in automation and artificial intelligence, robot manipulators have become more widely used, particularly for more complex tasks such as human-robot collaboration. This thesis employs two of the commonly used compliance control structures – impedance control and admittance control – to design compliance-control-based teach pendants for robot manipulators so as to facilitate motion planning and human-robot collaboration. In particular, to design a control scheme such that the robot manipulator is compliant to the applied force of the human operator, the external force information is essential. In this thesis, both force sensors and observers are used to estimate external contact force. Since the dynamic model of the robot manipulator is required when implementing impedance control schemes and/or external force observers, the dynamic model of the robot manipulator must be accurately identified. Robot joint redundancy, force and torque transformation between different coordinates, as well as the robot Jacobian singularity problem, are some issues to be dealt with while designing a compliance control-based teach pendant for robot manipulators. The compliance control-based teach pendent developed in this thesis can make the contact between the end-effector of the robot manipulator and environment compliant. Moreover, by exploiting a 6-D robot Jacobian matrix in the control scheme which makes it possible for the user to determine whether a specific pose of the robot manipulator is compliant so as to deal with complex motion planning problems. Compliance control parameters such as mass and damping coefficients depend on the design requirements of motion planning such as motion accuracy, speed, and the feeling of the user. Finally, the compliance control-based teach pendant developed in this thesis is applied to a real 6-axis industrial robot manipulator. Experimental results indicate that the compliance control-based teach pendant developed in this thesis exhibits satisfactory performance.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 3 1.3 文獻回顧 4 1.4 論文架構 6 第二章 機械手臂運動學及動態方程式推導 7 2.1 順向運動學 7 2.2 賈可比矩陣 10 2.3 機械手臂動態方程式 11 2.4 系統鑑別參數分離與化簡 14 第三章 機械手臂系統動態鑑別 16 3.1 激發動態之測試軌跡 16 3.2 機械手臂回授控制器設計 19 3.3 量測資料後處理 20 3.4 系統動態參數鑑別方法 21 3.5 系統參數化簡 24 第四章 外力估測法及順應控制教導器設計 26 4.1 外力轉矩估測法探討 26 4.1.1 基於干擾量觀測器之外力估測法 27 4.1.2 基於廣義動量之外力估測法 28 4.2 外力空間轉換關係 29 4.3 順應控制教導器設計 32 4.3.1 阻抗控制 35 4.3.2 導納控制 36 4.4 冗餘自由度與奇異點避免 37 4.5 教導器參數設定 40 第五章 實驗設備介紹與實作結果 41 5.1 實驗設備介紹 41 5.2 實驗一:六軸機械手臂系統動態鑑別 46 5.3 實驗二:外力估測法比較 57 5.4 實驗三:順應控制教導器比較 61 5.4.1 平面軌跡實驗 64 5.4.2 立體軌跡實驗 67 5.4.3 參數設定實驗 70 第六章 結論與建議 73 6.1 結論 73 6.2 未來展望與建議 74 參考文獻 75 附錄 83

    [1] ABB Group. “IRB 360 - industrial robots (Robotics) - industrial robots from ABB Robotics,” https://new.abb.com/products/robotics/industrial-robots/irb-360 [May 17, 2019]
    [2] ABB Group. “IRB 910SC-industrial robots from ABB Robotics,” https://new.abb.com/products/robotics/industrial-robots/irb-910sc [May 17, 2019]
    [3] 台達電子工業股份有限公司。產品-垂直多關節機器人-DRV70L系列-台達集團。http://www.deltaww.com/Products/CategoryListT1.aspx?CID=
    060603&PID=3814&hl=zh-TW&Name=DRV70L%E7%B3%BB%E5%88%
    97 [May 17, 2019]
    [4] CobotsGuide. “CobotsGuide | KUKA : LBR IIWA,” https://cobotsguide.com/2
    016/06/kuka-iiwa/ [May 17, 2019]
    [5] G. Buondonno and A. De Luca, “Efficient computation of inverse dynamics and feedback linearization for VSA-based robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 368-373, Mar. 2016.
    [6] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of mechanical manipulators,” IEEE Transactions on Automatic Control, vol. 25, no. 3, pp. 468-474, Jun. 1980.
    [7] C. H. An, C. G. Atkeson, J. D. Griffiths, and J. M. Hollerbach, “Experimental evaluation of feedforward and computed torque control,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 368-373, Jun. 1989.
    [8] Y. Tang, “Terminal sliding mode control for rigid robots,” Automatica, vol. 34, no. 1, pp. 51-56, Jan. 1998.
    [9] C. K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 849-859, Dec. 2006.
    [10] J. J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,” International Journal of Robotics Research, vol. 6, no. 3, pp. 49-59, Sep. 1987.
    [11] J. J. E. Slotine and W. Li, “Adaptive manipulator control: A case study,” IEEE Transactions on Automatic Control, vol. 33, no. 11, pp. 995-1003, Nov. 1988.
    [12] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial parameters of manipulator loads and links,” International Journal of Robotic Research, vol. 5, no. 3, pp. 101-119, Sep. 1986.
    [13] F. Caccavale and P. Chiacchio, “Identification of dynamic parameters and feedforward control for a conventional industrial manipulator,” Control Engineering Practice, vol. 2, no. 6, pp. 1039-1050, Dec. 1994.
    [14] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence, New York, NY: McGraw-Hill, 1987, pp. 84-96.
    [15] W. Khalil and J.-F. Kleinfinger, “Minimum operations and minimum parameters of the dynamic models of tree structure robots,” IEEE Journal on Robotics and Automation, vol. 3, no. 6, pp. 517-526, Dec. 1987.
    [16] M. Gautier and W. Khalil, “Direct calculation of minimum inertial parameters of serial robots,” IEEE Transactions on Robotics and Automation, vol. 6, no. 3, Jun. 1990.
    [17] H. Mayeda, K. Yoshida, and K. Osuka, “Base parameters of manipulator dynamics models,” IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 1367- 1372, Jun. 1990.
    [18] S. P. Chan, “A disturbance observer for robot manipulators with application to electronic components assembly,” IEEE Transactions on Industrial Electronics, vol. 42, no. 5, pp. 487-493. Oct. 1995
    [19] A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger, “Collision detection and safe reaction with the DLR-III lightweight robot arm,” in Proceedings of the IEEE/RSJ International Conference Intelligent Robots System, Beijing, China, 2006, pp. 1623–1630.
    [20] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A survey on detection, isolation, and identification,” IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1292-1312, Dec. 2017.
    [21] X. Dong, Z. Shaoguang, L. Xuerong, L. Min, and W. Hongxing, “Impedance control of robot manipulator with model reference torque observer,” in Proceedings of the IEEE Conference (ICIEA), Melbourne, Australia, Jun. 2013, pp. 994-998.
    [22] M.-C. Tsai, E.-C. Tseng, and M.-Y. Cheng, “Design of a torque observer for detecting abnormal load,” Control Engineering Practice, vol. 8, no. 3, pp. 289-269, Mar. 2000.
    [23] A. Mohammadi, H. J. Marquez, and M. Tavakoli, “Nonlinear disturbance observers: design and applications to Euler Lagrange systems,” IEEE Control Systems Magazine, vol. 37, no. 4, Aug. 2017.
    [24] A. De Luca and R. Mattone, “Actuator failure detection and isolation using generalized momenta,” in Proceedings of the International Conference on Robotics and Automation, Taipei, Taiwan, Sep. 2003, pp. 634-639.
    [25] N. Hogan, “Impedance control: an approach to manipulation,” in Proceedings of the American Control Conference, 1984, pp. 304-313.
    [26] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial parameters of manipulator loads and links,” International Journal of Robotics Research, vol. 5, no. 3, pp. 101-119, Sep. 1986.
    [27] B. Armstrong, “On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics,” International Journal of Robotics Research, vol. 8, no. 6, pp. 28-48, Dec. 1989.
    [28] M. Gautier and W. Khalil, “Exciting trajectories for the identification of base inertial parameters of robots,” International Journal of Robotics Research, vol. 11, no. 4, pp. 362-375, Aug. 1992.
    [29] W. Rackl, R. Lampariello, and G. Hirzinger, “Robot excitation trajectories for dynamic parameter estimation using optimized B-splines,” in Proceedings of the IEEE International Conference on Robotics and Automation, River Centre, Saint Paul, Minnesota, USA, May 2012, pp. 2042-2047.
    [30] F. Caccavele and P. Chiacchio, “Identification of dynamic parameters and feedforward control for a conventional industrial manipulator,” Control Engineering Practice, vol. 2, no. 6, pp. 1039-1050, Dec. 1994.
    [31] J. Swevers, W. Verdonck, and J. D. Schutter, “Dynamic model identification for industrial robots,” IEEE Control Systems Magazine, vol. 27, no. 5, pp. 58-71, Oct. 2007.
    [32] C. Presse and M. Gautier, “New criteria of exciting trajectories for robot identification,” in Proceedings of the IEEE Conference on Robotics and Automation, Atlanta, 1993, pp. 907-912.
    [33] M. Gautier, A. Janot, and P. O. Vandanjon, “A new closed-loop output error method for parameter identification of robot dynamics,” IEEE Transactions on Control Systems Technology, vol. 21, no. 2, pp. 428-444, Mar. 2013.
    [34] A. Janot, P. O. Vandanjon, and M. Gautier, “Identification of physical parameters and instrumental variables validation with two-stage least squares estimator,” IEEE Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1386-1393, Jul. 2013.
    [35] A. Janot, P. O. Vandanjon, and M. Gautier, “A generic instrumental variable approach for industrial robot identification,” IEEE Transactions on Control Systems Technology, vol. 22, no. 1, pp. 132-145, Jan. 2014.
    [36] M. Gautier and Ph. Poignet, “Extended Kalman filtering and weighted least squares dynamic identification of robot,” Control Engineering Practice, vol. 9, no. 12, pp. 1361-1372, Dec. 2001.
    [37] A. Calanca, R. Muradore, and P. Fiorini, “A review of algorithms for compliant control of stiff and fixed-compliance robots,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 613-624, Apr. 2016.
    [38] J. De Schutter, “A study of active compliant motion control methods for rigid manipulators based on a generic scheme,” in Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 1987, Mar. 1987, pp. 1060-1065.
    [39] M. H. Raibert and J.J. Craig, “Hybrid position/force control of manipulators,” Control of Robotic Devices, vol. 103, pp. 126-133, Jun. 1981.
    [40] S. Chiaverini and L. Sciavicco, “The parallel approach to force/position control of robotic manipulators,” IEEE Transactions of Robotics and Automation, vol. 9, no. 4, pp. 361-373, Aug. 1993.
    [41] C. Ott , R. Mukherjee, and Y. Nakamura, “A hybrid system framework for unified impedance and admittance control,” Journal of Intelligent & Robotic Systems, vol. 78, no. 3-4, pp. 359-375, Jun. 2015.
    [42] F. Ficuciello, L. Villani, and B. Siciliano, “Variable impedance control of redundant manipulators for intuitive human–robot physical interaction,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 850-863, Aug. 2015.
    [43] F. Dimeas and N. Aspragathos, “Online stability in human-robot cooperation with admittance control,” IEEE Transactions on Haptics, vol. 9, no. 2, pp. 267-278, Apr.-Jun. 2016.
    [44] F. Dimeas, V. C. Moulianitis, C. Papakonstantinou, and N. Aspragathos, “Manipulator performance constraints in Cartesian admittance control for human-robot cooperation,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 3049-3054
    [45] F. Dimeas, V. C. Moulianitis, and N. Aspragathos, “Manipulator performance constraints in human-robot cooperation,” Robotics and Computer–Integrated Manufacturing, vol. 50, pp. 222-233, Apr. 2018
    [46] 莊閔皓,六軸工業用機械手臂之系統鑑別與順應控制研究,碩士論文,國立成功大學電機工程學系,2016。
    [47] 胡智皓,選擇順應性裝配機械手臂之外力估測與順應性研究,碩士論文,國立成功大學電機工程學系,2016。
    [48] 高子洋,工業用機械手臂之阻抗控制研究,碩士論文,國立成功大學電機工程學系,2017。
    [49] 游翔麟,基於模糊力量感測之六軸機械手臂的直覺式教導,碩士論文,淡江大學電機工程學系,2015。
    [50] 鄒博年,自動鑽削之順應運動及力量伺服控制器設計與實作,碩士論文,國立臺灣科技大學機械工程系,2014。
    [51] 陳佳緯,以干擾估測控制器實現順應銑削控制與振刀抑制,碩士論文,國立臺北科技大學機械工程系,2018。
    [52] 林鈺翔,結合順應性控制之自動螺絲鎖附系統,碩士論文,國立臺北科技大學自動化科技研究所,2014。
    [53] 陳昭仁,基於觀測器之阻抗控制與被動式速度控制於手臂健身/附件裝置之應用,碩士論文,國立成功大學電機工程學系,2013。
    [54] 蔡安智,以多通道肌電訊號進行動作辨識與控制之外骨骼機器手臂系統,博士論文,國立台灣大學生物產業機電工程學研究所,2014。
    [55] H. Liao, S. Fan, and D. Fan, “Friction compensation of harmonic gear based on location relationship,” Journal of Systems and Control Engineering, vol. 230, no. 8, pp. 695-705, Jun. 2016.
    [56] W. Khalil, A. Vijayalingam, B. Khomutenko, I. Mukhanov, P. Lemoine, and G. Ecorchard, “OpenSYMORO: An open-source software package for symbolic modelling of robots,” in Proceedings of the IEEE/ASME International Conference Advanced Intelligent Mechatronics (AIM), July 2014, pp. 1206-1211.
    [57] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks. vol. 1, no. 1, pp. 4-27, Mar. 1990.
    [58] P. Agand, M. A. Shoorehdeli, and A. Khaki-Sedigh, “Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification,” Engineering Applications of Artificial Intelligence, vol. 65, no. 1, pp. 1-11, Oct. 2017.
    [59] A. C. Smith, and K. Hashtrudi-Zaad, “Neural-network-based contact force observers for haptic applications,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1163-1175, Dec. 2006
    [60] C. W. Wampler, II, “Manipulator inverse kinematic solutions based on vector formations and least-squares methods,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, no. 1, pp. 93-101, Jan. 1986.
    [61] V. Duchaine and C. Gosselin, “Investigation of human-robot interaction stability using Lyapunov theory,” in Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008, pp. 2189–2194.
    [62] V. Duchaine, B. Mayer-St-Onge, D. Gao, and C. Gosselin, “Stable and intuitive control of an intelligent assist device,” IEEE Transactions on Haptics, vol. 5, no. 2, pp. 1939–1412, Apr–Jun. 2012.
    [63] S. Buerger and N. Hogan, “Complementary stability and loop shaping for improved human-robot interaction,” IEEE Transactions on Robotics, vol. 23, no. 2, pp. 232–244, Apr. 2007.

    無法下載圖示 校內:2024-06-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE