簡易檢索 / 詳目顯示

研究生: 葉逢昇
Ye, Feng-Sheng
論文名稱: 彰化地區離岸風場土壤液化潛勢實驗研究
Experimental study of soil liquefaction potential of Offshore Wind Farm near Changhua area
指導教授: 郭玉樹
Kuo, Yu-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 離岸風機海床土壤液化潛勢簡易經驗法動態三軸試驗動態單剪試驗
外文關鍵詞: offshore wind turbine, seabed liquefaction potential, simplified method, dynamic triaxial test, dynamic simple shear test
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我國離岸風場海床表層多為疏鬆細砂,於地震發生時極可能發生海床土壤液化,影響離岸風機基礎穩定性。離岸風機基礎設計前需進行海床土壤液化潛能評估。工程上多採用簡易經驗法評估土壤液化,此類方法主要根據陸域震害案例建立,其用於海床土壤液化潛勢評估之適宜性仍待確認。本研究取得台灣彰濱海域地質土壤鑽探資料,以新日本道路橋簡易分析法(NJRA法)及NCEER法評估海床土壤液化潛勢。同時,透過鑽探取得現地原狀土樣,進行動態三軸與動態單剪力學試驗取得土壤抗液化強度比。本研究分別採用NJRA法與NCEER法評估目標風場BH02鑽孔與BH03鑽孔之土壤液化潛勢,NJRA法評估結果顯示兩鑽孔皆無發生土壤液化之疑慮,而NCEER法評估結果顯示BH02鑽孔深度介於2至3米之土層以及BH03鑽孔深度介於7至10米之土層有土壤液化之虞。本試驗以三軸試驗取得CL-1與CL-2原狀土樣及重模土壤之抗液化強度,試驗結果顯示原狀土樣之土壤抗液化強度皆大於重模土樣之土壤抗液化強度,此結果與文獻相符。彰濱海域土壤包含大量中等緊密粉土質砂,參考張倖偉(2017)之研究,其工程土壤種類為中等緊密砂S3。本研究針對S3工程土壤進行動態單剪試驗,取得S3工程土壤之重模土壤抗液化強度0.103。

    The simplified empirical method is most used in assessing the soil liquefaction potential. However, these methods were constructed based on the onshore earthquake disaster and field tests, and its feasibility for assessing seabed soil liquefaction remains to be confirmed. This study obtained the field ground investigation data and assess the soil liquefaction potential with the simplified empirical method (NJRA and NCEER method). The NJRA assessment results show that the surface soil layers of both boreholes are nonliquefiable.The NCEER assessment results show that soil liquefaction might occur at the depth between 2 m and 3 m of the borehole BH02 and at the depth between 7 m and 10 m of borehole BH03.In this study, the cyclic strength of CL-1 and CL-2 undisturbed soil sample and remolded soil sample were obtained by the cyclic triaxial test. The test results show that the cyclic strength of undisturbed soil samples is greater than that of remolded soil samples. The results are consistent with the literature. According to the research of Chang (2017), the engineering soil type of CL-1 and CL-2 soil are medium-dense sand S3. In this study, the cyclic simple shear test was carried out on the S3 engineering soil, and the cyclic strength of the remolded S3 engineering soil was 0.103. The results in this thesis can be taken into reference at the initial phase of the development of offshore wind energy.

    摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 圖目錄 xi 表目錄 xiv 符號 xv 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 研究架構 3 第二章 土壤液化潛勢評估 4 2-1 土壤液化機制 4 2-2 土壤液化災害 7 2-3 土壤液化簡易經驗評估法 8 2-3-1 SPT-based分析法-新日本道路橋簡易經驗法 10 2-3-2 SPT-based分析法-美國國家地震工程研究中心 15 第三章 土壤抗液化強度及受力變形行為 18 3-1 動態三軸力學行為 18 3-2 動態單剪力學行為 21 3-3 土壤抗液化強度 22 3-4 土壤液化反覆應力轉換 25 3-5 土壤抗液化強度影響因子 29 第四章 研究方法 37 4-1 土壤力學試驗規劃 37 4-2 試驗土樣-台灣彰化離岸風場海域土壤 38 4-3 土壤動態三軸力學試驗條件 44 4-4 土壤動態單剪試驗條件 47 第五章 土壤液化試驗結果與分析 50 5-1 土壤液化簡易經驗分析成果 50 5-1-1 新日本道路橋簡易經驗法分析成果 50 5-1-2 NCEER分析成果 53 5-2 動態三軸求取土壤抗液化強度 56 5-2-1 原狀試體土壤抗液化強度 56 5-2-2 重模試體土壤抗液化強度 65 5-2-3 原狀試體與重模試體土壤抗液化強度之關係 75 5-3 動態單剪求取土壤抗液化強度 77 第六章 結論與建議 88 6-1 結論 88 6-2 建議 89 參考文獻 90

    1. ASTM D4767-11. (2011). “Standard test method for consolidated undrained triaxial compression test for cohesive soils,” ASTM International, West Conshohocken, PA, USA.
    2. ASTM D5311-11. (2012). “Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil1,” ASTM International, West Conshohocken, PA, USA
    3. ASTM D7181-11. (2012). “Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils,” ASTM International, West Conshohocken, PA, USA.
    4. ASTM D854-14. (2015). “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer,” ASTM International, West Conshohocken, PA, USA.
    5. ASTM D4253-14. (2015). “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table,” ASTM International, West Conshohocken, PA, USA.
    6. ASTM D4254-14. (2015). “Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density,” ASTM International, West Conshohocken, PA, USA.
    7. ASTM D6528-17 (2017). “Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Fine Grain Soils,” ASTM International, West Conshohocken, PA, USA.
    8. Boulanger, R. W., and Seed, R. B. (1995) “Liquefaction of sand under bidirectional monotonic and cyclic loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 121, No. 12, pp. 870-878.
    9. BSH (2008). Bundesamt Für Seeschifffahrt Und Hydrographie “Baugrunderkundung Für Offshore-Windenergieparks.” Federal Maritime and Hydrographic Agency of Germany (BSH); in German.
    10. BSH (2012). Guidance for use of the BSH standard “Design of Offshore Wind Turbines,” Bundesamt für Seeschifffahrt und Hydrographie. Federal Maritime and Hydrographic Agency of Germany (BSH); in German.
    11. BSH (2014). Guidance for use of the BSH standard Minimum requirements for geotechnical surveys and investigations into offshore wind energy structures, offshore stations and power cables,” Bundesamt für Seeschifffahrt und Hydrographie. Federal Maritime and Hydrographic Agency of Germany (BSH); in German.
    12. Casagrande, A. (1936) “Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, Vol. 23, No. 1, pp. 13-32.
    13. Castro, G. (1975). “Liquefaction and Cyclic Mobility of Saturated Sands,” Journal of the Geotechnical Engineering Division, Vol. 101, No. 6, pp. 551-569.
    14. Carraro JAH., Bandini P., and Salgado, R. (2003) “Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance,” Journal of the Geotechnical Engineering Division, ASCE Vol. 129, No. 11, 965–976.
    15. Finn, W. D. L., Emery, J. J., and Gupta, Y. P. (1971). “Sand Liquefaction in Triaxial and Simple Shear Tests,” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. 4, pp. 639-659.
    16. Fonseca, A, AV., Soares, M., and Fourie, AB. (2005). “Cyclic DSS tests for the evaluation of stress densification effects in liquefaction assessment,” Soil Dynamics and Earthquake Engineering, Vol. 75, pp. 98-113.
    17. Hazen, A. (1920). “Hydraulic-Fill Dams,” Transactions of the ASCE, pp. 1713-1745.
    18. Hazirbaba, K. (2005) “Pore Pressure Generation Characteristics of Sand and Silty Sands:A Strain approach,” Ph.D. Dissertation, University of Texas at Austin.
    19. Ishihara, K., Sliver, M. L., and Kitgawa, H. (1978). “Cyclic Strengths of Undisturbed Sands Obtained by Large Diameter Sampling,” Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 18, No. 4, pp. 61-76.
    20. Ishihara, K., and Tadatsu, H. (1979). “Effects of Over-consolidation k0 Conditions on the Liquefaction Characteristics of Sands,” Soils and Foundations, Vol. 19, No. 4, pp. 59-68.
    21. Ishibashi, I. M., Sherlif, M. A., AND Cheng, W. L. (1982). “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48.
    22. Iwasaki, T., Arakawa, T., and Tokida, K. (1984). “Simplified Procedures for Assessing Soil Liquefaction During Earthquake,” International Journal of Soil Dynamics and Earthquake Engineering,” Vol. 3, No. 1, pp. 49-58.
    23. Ishihara, K., and Yoshimi, M. (1992). “Evaluation of Settlement in Sand Deposits Following Liquefaction during Earthquake,” Soils and Foundations, Vol. 32, No. 1, pp. 173-188.
    24. Ishihara, K. (1993). “Liquefaction and Flow Failure during Earthquakes,” Geotech-nique, Vol. 43, No. 3, pp. 351-415.
    25. Jaky, J. (1944). “The Coefficient of Earth Pressure at Rest,” Journal of the Society of Hungarian Arechitects and Engineers, pp. 355-358.
    26. Jiaer, W. U., Kammerer, A. M., Riemer, M. F., Seed, R. B., and Pestana, J. M. (2004) “Laboratory study of liquefaction triggering criteria,” In: 13th world conference on earthquake engineering, Vancouver, BC, Canada
    27. Kramer, S.L. (1996) “Geotechnical Earthquake Engineering,” Prentice Hall, Englewood Cliffs, New Jersey.
    28. Mulilis, J., Townsend, F., and Horz, R. (1978) “Triaxial Testing Techniques and Sand Liquefaction,” ASTM. STP, pp.265-279.
    29. Mandokhail S.J., Park D., and Yoo J.K. (2017) “Development of normalized liquefaction resistance curve for clean sands,” Bull Earthquake Engineering, Vol. 15, No. 3, pp. 907–929.
    30. Nagase, H., and Ishihara, K. (1988). “Liquefaction-Induced Compaction and Settlement of Sand during Earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 65-76.
    31. Peacock, W. H., and Seed, H. B. (1968). “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions,” Journal of Soil Mechanics and Foundations Div, ASCE, Vol. 94, No. 3, pp. 689-708.
    32. Pyke, R., Seed, H. B., and Chan, C. K. (1975). “Settlement of Sands under Multidirectional Shaking,” Journal of the Geotechnical Engineering Division, Vol. 101, No. 4, pp. 379-397.
    33. Polito, C. P., and Martin Ⅱ, J. R. (2001). “Effects of Non-plastic Fines on the Liquefaction Resistance of Sands,” Journal of the Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 5, pp. 408-415.
    34. Seed, H. B., and Lee, K. L. (1966). “Liquefaction of Saturated Sands during Cyclic Loading,” Journal of Soil Mechanics and Foundations Div, 92(ASCE# 4972 Proceeding).
    35. Silver, M. L., and Seed, H. B. (1971). “Volume Changes in Sands during Cyclic Loading,” Journal of Soil Mechanics and Foundations Div, ASCE, Vol. 97, No. 9, pp. 1171-1182.
    36. Seed, H. B., and Peacock, W. H. (1971). “Test Procedures for Measuring Soil Liquefaction Characteristics,” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. 8, pp. 1099-1119.
    37. Seed, H. B., and Idriss, I.M. (1971). “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and foundations Division, ASCE, Vol. 97, No. 9, pp. 1249- 1273.
    38. Seed, H.B., Arango, I., and Chan, C. K, (1975) “Evaluation of soil liquefaction potential for level ground during earthquakes,” A summary report, NUREG—0026, United States.
    39. Seed, H. B. (1976). “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Liquefaction Problems in Geotechnical Engineering, pp. 1-104.
    40. Seed, H. B. (1979). “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes,” Journal of the Geotechnical Engineering Division, Vol. 105, No. 2, pp. 201-205.
    41. Seed, H. B., and Idriss, I. M. (1982). ‘‘Ground Motions and Soil Liquefaction During Earthquakes,’’ Earthquake Engineering Research Institute Monograph, Oakland, Calif.
    42. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). ‘‘Influence of SPT Procedures in soil liquefaction resistance evaluations,’’ Journal of Geotechnical Engineering, ASCE, Vol 111, No. 12, pp. 1425-1445.
    43. Tatsuoka F., and Silver, M. L. (1981). “Undrained stress-strain behavior of sand under irregular loading,” Soils and Foundations, Vol. 21, No. 1, pp. 51-66.
    44. Peck, R. B., Hanson, W. E., and Thornburn, T. H. (1953). Foundation Engineering, LWW.
    45. Vaid, Y. P. (1994). “Liquefaction of Silty soils,” Ground Failures under Seismic Conditions, Geotechnical Special Publication, No. 44, ASCE, pp. 1-16.
    46. Yoshimi, Y., and Oh-oka, H. (1975). "Influence of degree of shear stress reversal on the liquefaction potential of saturated sands," Soil and Foundations, Vol. 15, No.3, pp.27-40.
    47. Yoshimi Y, Tokimatsu K. Kaneko O., and Makihara Y. (1984) “Undrained cyclic shear strength of a dense Niigata sand,” Soils and Foundations, Vol. 24, No. 4, pp. 131-145.
    48. Yoshimi Y, Tokimatsu K., and Hosaka Y. (1989). “Evaluation of liquefaction resistance of clean sands based on high-quality undisturbed samples,” Soils and Foundations, Vol. 29, No. 1, pp. 93-104.
    49. Yoshimi, Y., Tokimatsu, K., and Ohara, J. (1994). “In situ liquefaction resistance of clean sands over a wide density range,” Geotechnique, Vol. 44, No.3, pp.479-494.
    50. Yasuda, S., Yoshida, N., Masuda, T., Nagase, H., Mine, K. and Kiku, H. (1995). “Stress-Strain Relationship of Liquefied Sands,” Proceedings of the 3th International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 811-816.
    51. Youd, T. L., and Idriss, I.M. “Liquefaction Resistance of Soil:Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,” Journal of the Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, pp. 297-313.
    52. Yang J., and Sze H. (2011) “Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions,” Geotechnique, Vol. 61, No.1, pp.59-73.
    53. Wong, R.T., Seed, H. B., and Chan, C.K. (1975). “Cyclic Loading Liquefaction of Gravelly Soil,” Journal of Soil Mechanics and Foundations Div, ASCE, Vol. 101, No. 6, pp. 571-583.
    54. 日本道路協會(1996),「道路橋示方書 • 同解說」。
    55. 陳景文(1999),「台南主要經建區域之土壤液化潛能評估」,國家地震工程中心,NCEER-99-043。
    56. 內政部(2001),「建築物基礎構造設計規範」。
    57. 內政部營建署(2011),「建築物耐震設計規範及解說」。
    58. 台灣電力股份有限公司(2009),「彰濱離岸風力發電計畫可行性研究」。
    59. 財團法人國家實驗研究院台灣海洋科技研究中心(2012),「彰濱海域地質鑽探試驗分析工作報告書」。
    60. 台灣電力公司(2014),「離岸風力發電第一期可行性研究」。
    61. 陳景文、郭玉樹、蔡潔忞、許惠婷(2014),「彰濱風場液化潛能初步評估」,地工技術,第142期。
    62. 台灣電力公司(2015),「離岸風力發電第一期計畫環境影響說明書」。
    63. 郭玉樹(2016),「離岸風場廠址調查與環境評估-地質調查與評估技術」,科技部能源專題研究計畫。
    64. 海峽風電股份有限公司籌備處(2017),「海峽離岸風力發電計畫(27號風場)環境影響說明書」。
    65. 海峽風電股份有限公司籌備處(2017),「海峽離岸風力發電計畫(28號風場)環境影響說明書」。
    66. 中能發電股份有限公司籌備處(2017) ,「中能離岸風力發電開發計畫環境影響說明書」。
    67. 張倖偉(2017),「彰濱外海離岸風場地工模型雛形建立」,碩士論文,國立成功大學水利暨海洋工程研究所,台南。
    68. 許哲維(2018),「地工設計參數不確定性大口徑單樁基礎穩定性影響研究」,碩士論文,國立成功大學水利暨海洋工程研究所,台南。
    69. 台灣電力股份有限公司(2019),「地質鑽探調查結果報告書」。
    70. 林筠蓁(2019),「彰化外海離岸風場三維工程地質模型研究」,碩士論文,國立成功大學水利暨海洋工程研究所,台南。
    71. 翁子羚(2019),「彰化地區離岸風場地盤反應分析」,碩士論文,國立成功大學水利暨海洋工程研究所,台南。

    無法下載圖示 校內:2029-08-20公開
    校外:2029-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE